論文の概要: Fine-Tuning Small Language Models (SLMs) for Autonomous Web-based Geographical Information Systems (AWebGIS)
- arxiv url: http://arxiv.org/abs/2508.04846v1
- Date: Wed, 06 Aug 2025 19:50:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-08 18:59:39.632797
- Title: Fine-Tuning Small Language Models (SLMs) for Autonomous Web-based Geographical Information Systems (AWebGIS)
- Title(参考訳): 自動Webベース地理情報システム(AWebGIS)のための微調整小言語モデル(SLM)
- Authors: Mahdi Nazari Ashani, Ali Asghar Alesheikh, Saba Kazemi, Kimya Kheirkhah, Yasin Mohammadi, Fatemeh Rezaie, Amir Mahdi Manafi, Hedieh Zarkesh,
- Abstract要約: 本研究では,AWebGISを実現するための3つのアプローチを比較する。
クラウドベース大規模言語モデル(LLM)を用いた完全自動化オンライン手法
2) サポートベクターマシンやランダムフォレストなどの古典的機械学習分類器を用いた半自動オフライン手法。
(3) クライアントのWebブラウザで実行される、細調整された小さな言語モデル(SLM)、特にT5小モデルに基づく、完全に自律的なオフライン(クライアント側)メソッド。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous web-based geographical information systems (AWebGIS) aim to perform geospatial operations from natural language input, providing intuitive, intelligent, and hands-free interaction. However, most current solutions rely on cloud-based large language models (LLMs), which require continuous internet access and raise users' privacy and scalability issues due to centralized server processing. This study compares three approaches to enabling AWebGIS: (1) a fully-automated online method using cloud-based LLMs (e.g., Cohere); (2) a semi-automated offline method using classical machine learning classifiers such as support vector machine and random forest; and (3) a fully autonomous offline (client-side) method based on a fine-tuned small language model (SLM), specifically T5-small model, executed in the client's web browser. The third approach, which leverages SLMs, achieved the highest accuracy among all methods, with an exact matching accuracy of 0.93, Levenshtein similarity of 0.99, and recall-oriented understudy for gisting evaluation ROUGE-1 and ROUGE-L scores of 0.98. Crucially, this client-side computation strategy reduces the load on backend servers by offloading processing to the user's device, eliminating the need for server-based inference. These results highlight the feasibility of browser-executable models for AWebGIS solutions.
- Abstract(参考訳): 自律的なWebベースの地理情報システム(AWebGIS)は、自然言語入力から地理空間操作を行い、直感的でインテリジェントでハンズフリーな対話を提供することを目的としている。
しかし、現在のソリューションのほとんどはクラウドベースの大規模言語モデル(LLM)に依存しており、これは継続的なインターネットアクセスを必要とし、集中型サーバー処理によるユーザのプライバシとスケーラビリティの問題を提起する。
本研究では,(1)クラウドベースのLLMを用いた完全自動オンライン手法(例:Cohere),(2)サポートベクトルマシンやランダムフォレストなどの古典的機械学習分類器を用いた半自動オフライン方式(例:Cohere),(3)細調整された小型言語モデル(SLM)に基づく完全自動オフライン(クライアントのWebブラウザで実行されるT5小モデル(例:T5小モデル)を比較した。
SLMを利用する第3のアプローチは、全ての手法の中で最も精度が高く、正確なマッチング精度は0.93、Levenshtein類似度は0.99、リコール指向アンダースタディはROUGE-1およびROUGE-Lスコア0.98である。
このクライアント側の計算戦略は、処理をユーザのデバイスにオフロードすることで、サーバベースの推論を不要にすることで、バックエンドサーバの負荷を低減する。
これらの結果は、AWebGISソリューションのためのブラウザ実行可能なモデルの実現可能性を強調している。
関連論文リスト
- PointLoRA: Low-Rank Adaptation with Token Selection for Point Cloud Learning [54.99373314906667]
ポイントクラウドのための自己教師付き表現学習は、様々なタスクで事前訓練されたモデルパフォーマンスを改善する効果を実証した。
事前訓練されたモデルは複雑さが増すにつれて、下流のアプリケーションに完全に微調整を施すには、かなりの計算資源とストレージ資源が必要である。
そこで我々は,低ランク適応(LoRA)とマルチスケールトークン選択を併用した簡易かつ効果的なPointLoRAを提案する。
論文 参考訳(メタデータ) (2025-04-22T16:41:21Z) - FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
分散トレーニングは、システム設計と効率に関する重要な課題に直面します。
大規模深層ニューラルネットワーク(DNN)のトレーニング用に設計・実装された分散トレーニングシステムFusionLLMを提案する。
本システムと手法は,収束性を確保しつつ,ベースライン法と比較して1.45~9.39倍の高速化を実現可能であることを示す。
論文 参考訳(メタデータ) (2024-10-16T16:13:19Z) - ML-based identification of the interface regions for coupling local and nonlocal models [0.0]
局所非局所カップリングアプローチは、局所モデルの計算効率と非局所モデルの精度を組み合わせる。
本研究では,局所モデルと非局所モデルを用いるべき領域を自動的に検出する機械学習アプローチを提案する。
論文 参考訳(メタデータ) (2024-04-23T14:19:36Z) - Decentralized Personalized Online Federated Learning [13.76896613426515]
バニラ連合学習は、オンライン環境での学習、各クライアントでパーソナライズされたモデル学習、分散環境での学習をサポートしない。
我々は,これら3つの側面を同時に考慮した,分散化された個人化オンラインフェデレーションラーニングを新たに提案する。
提案手法の有効性とロバスト性を実世界の3項目推薦データセットと1つの空気質予測データセットで検証した。
論文 参考訳(メタデータ) (2023-11-08T16:42:10Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
フェデレートラーニング(FL)とスプリットラーニング(SL)は、データを(デバイス上で)プライベートにしながら協調学習を可能にする2つのフレームワークである。
FLでは、各データ保持者がモデルをローカルにトレーニングし、集約のために中央サーバにリリースする。
SLでは、クライアントは個々のカット層アクティベーション(スマッシュされたデータ)をサーバにリリースし、そのレスポンス(推論とバックの伝搬の両方)を待つ必要があります。
本研究では, クライアントがオンライン知識蒸留を通じて, 対照的な損失を生かして協調する, プライバシ保護機械学習の新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-20T10:49:22Z) - Optimizing Server-side Aggregation For Robust Federated Learning via
Subspace Training [80.03567604524268]
クライアント間の非IIDデータ分散と中毒攻撃は、現実世界のフェデレーション学習システムにおける2つの大きな課題である。
サーバ側集約プロセスを最適化する汎用的なアプローチであるSmartFLを提案する。
本稿では,SmartFLの収束と一般化能力に関する理論的解析を行う。
論文 参考訳(メタデータ) (2022-11-10T13:20:56Z) - Federated Distillation of Natural Language Understanding with Confident
Sinkhorns [12.681983862338619]
ユーザデバイス上で訓練された(ローカル)モデルのフェデレーションから,中央(グローバル)モデルを学習するためのアプローチを提案する。
グローバルモデルを学ぶためには,局所モデルに割り当てられたソフトターゲットの信頼度から,グローバルモデル予測の最適輸送コストを最小化する。
論文 参考訳(メタデータ) (2021-10-06T00:44:00Z) - Error Detection in Large-Scale Natural Language Understanding Systems
Using Transformer Models [0.0]
Alexa、Siri、Cortana、Google Assistantといった大規模な会話アシスタントは、ドメイン、インテント、名前付きエンティティ認識の複数のモデルを使用して、発話毎に処理する。
オフラインのTransformerモデルを用いて、ドメイン分類エラーを検出する。
そこで我々は,RoBERTaモデルから生成した発話エンコーディングと生産システムのNbest仮説を組み合わせた。
論文 参考訳(メタデータ) (2021-09-04T00:10:48Z) - Federated Multi-Target Domain Adaptation [99.93375364579484]
フェデレートされた学習手法により、プライバシを保護しながら、分散ユーザデータ上で機械学習モデルをトレーニングすることが可能になります。
分散クライアントデータがラベル付けされず、集中型ラベル付きデータセットがサーバ上で利用可能となる、より実用的なシナリオを考えます。
本稿では,新しい課題に対処する効果的なDualAdapt法を提案する。
論文 参考訳(メタデータ) (2021-08-17T17:53:05Z) - A Bayesian Federated Learning Framework with Online Laplace
Approximation [144.7345013348257]
フェデレートラーニングは、複数のクライアントが協力してグローバルに共有されたモデルを学ぶことを可能にする。
クライアント側とサーバ側の両方の後方部を近似するために,オンラインラプラス近似を用いた新しいFLフレームワークを提案する。
提案手法の利点を実証し,いくつかのベンチマークで最新の結果を得た。
論文 参考訳(メタデータ) (2021-02-03T08:36:58Z) - Fully Dynamic Inference with Deep Neural Networks [19.833242253397206]
Layer-Net(L-Net)とChannel-Net(C-Net)と呼ばれる2つのコンパクトネットワークは、どのレイヤやフィルタ/チャネルが冗長であるかをインスタンス毎に予測する。
CIFAR-10データセットでは、LC-Netは11.9$times$ less floating-point Operations (FLOPs) となり、他の動的推論手法と比較して最大3.3%精度が向上する。
ImageNetデータセットでは、LC-Netは最大1.4$times$ FLOPsを減らし、Top-1の精度は他の方法よりも4.6%高い。
論文 参考訳(メタデータ) (2020-07-29T23:17:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。