RCUKF: Data-Driven Modeling Meets Bayesian Estimation
- URL: http://arxiv.org/abs/2508.04985v1
- Date: Thu, 07 Aug 2025 02:41:43 GMT
- Title: RCUKF: Data-Driven Modeling Meets Bayesian Estimation
- Authors: Kumar Anurag, Kasra Azizi, Francesco Sorrentino, Wenbin Wan,
- Abstract summary: We propose a novel framework, reservoir computing with unscented Kalman filtering (RCUKF)<n>RCUKF integrates data-driven modeling via reservoir computing with Bayesian estimation through the unscented Kalman filter (UKF)<n>We demonstrate RCUKF effectiveness on well-known benchmark problems and a real-time vehicle trajectory estimation task in a high-fidelity simulation environment.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate modeling is crucial in many engineering and scientific applications, yet obtaining a reliable process model for complex systems is often challenging. To address this challenge, we propose a novel framework, reservoir computing with unscented Kalman filtering (RCUKF), which integrates data-driven modeling via reservoir computing (RC) with Bayesian estimation through the unscented Kalman filter (UKF). The RC component learns the nonlinear system dynamics directly from data, serving as a surrogate process model in the UKF prediction step to generate state estimates in high-dimensional or chaotic regimes where nominal mathematical models may fail. Meanwhile, the UKF measurement update integrates real-time sensor data to correct potential drift in the data-driven model. We demonstrate RCUKF effectiveness on well-known benchmark problems and a real-time vehicle trajectory estimation task in a high-fidelity simulation environment.
Related papers
- Deep Bilinear Koopman Model for Real-Time Vehicle Control in Frenet Frame [0.0]
This paper presents a deep Koopman approach for modeling and control of vehicle dynamics within the curvilinear Frenet frame.<n>The proposed framework uses a deep neural network architecture to simultaneously learn the Koopman operator and its associated invariant subspace from the data.<n>The proposed controller achieved significant reductions in tracking error relative to baseline controllers, confirming its suitability for real-time implementation in embedded autonomous vehicle systems.
arXiv Detail & Related papers (2025-07-16T18:49:44Z) - Efficient dynamic modal load reconstruction using physics-informed Gaussian processes based on frequency-sparse Fourier basis functions [0.0]
This paper presents an efficient dynamic load reconstruction method using physics-informed Gaussian processes (GP)<n>The GP's covariance matrices are built using the description of the system dynamics, and the model is trained using structural response measurements.<n>The developed model holds potential for applications in structural health monitoring, damage prognosis, and load model validation.
arXiv Detail & Related papers (2025-03-12T14:16:27Z) - Bridging the Sim-to-Real Gap with Bayesian Inference [53.61496586090384]
We present SIM-FSVGD for learning robot dynamics from data.
We use low-fidelity physical priors to regularize the training of neural network models.
We demonstrate the effectiveness of SIM-FSVGD in bridging the sim-to-real gap on a high-performance RC racecar system.
arXiv Detail & Related papers (2024-03-25T11:29:32Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs.
We introduce a novel generative modeling framework grounded in textbfphase space dynamics
Our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.
arXiv Detail & Related papers (2023-10-11T18:38:28Z) - Kalman Filter for Online Classification of Non-Stationary Data [101.26838049872651]
In Online Continual Learning (OCL) a learning system receives a stream of data and sequentially performs prediction and training steps.
We introduce a probabilistic Bayesian online learning model by using a neural representation and a state space model over the linear predictor weights.
In experiments in multi-class classification we demonstrate the predictive ability of the model and its flexibility to capture non-stationarity.
arXiv Detail & Related papers (2023-06-14T11:41:42Z) - Improving and generalizing flow-based generative models with minibatch
optimal transport [90.01613198337833]
We introduce the generalized conditional flow matching (CFM) technique for continuous normalizing flows (CNFs)
CFM features a stable regression objective like that used to train the flow in diffusion models but enjoys the efficient inference of deterministic flow models.
A variant of our objective is optimal transport CFM (OT-CFM), which creates simpler flows that are more stable to train and lead to faster inference.
arXiv Detail & Related papers (2023-02-01T14:47:17Z) - Building a Fuel Moisture Model for the Coupled Fire-Atmosphere Model
WRF-SFIRE from Data: From Kalman Filters to Recurrent Neural Networks [0.0]
Current fuel moisture content (FMC) subsystems in WRF-SFIRE and its workflow system WRFx use a time-lag differential equation model.
We observe that the data flow in a system consisting of a model and the Kalman filter can be interpreted to be the same as the data flow in a recurrent neural network (RNN)
Because standard AI approaches did not converge to reasonable solutions, we pre-train the RNN with special initial weights devised to turn it into a numerical solver of the differential equation.
arXiv Detail & Related papers (2023-01-13T07:56:01Z) - A Physics-informed Diffusion Model for High-fidelity Flow Field
Reconstruction [0.0]
We propose a diffusion model which only uses high-fidelity data at training.
With different configurations, our model is able to reconstruct high-fidelity data from either a regular low-fidelity sample or a sparsely measured sample.
Our model can produce accurate reconstruction results for 2d turbulent flows based on different input sources without retraining.
arXiv Detail & Related papers (2022-11-26T23:14:18Z) - Catch-22s of reservoir computing [0.0]
Reservoir Computing is a simple and efficient framework for forecasting the behavior of nonlinear dynamical systems from data.
We focus on the important problem of basin prediction -- determining which attractor a system will converge to from its initial conditions.
By incorporating the exact nonlinearities in the original equations, we show that NGRC can accurately reconstruct intricate and high-dimensional basins of attraction.
arXiv Detail & Related papers (2022-10-18T23:31:15Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - KalmanNet: Neural Network Aided Kalman Filtering for Partially Known
Dynamics [84.18625250574853]
We present KalmanNet, a real-time state estimator that learns from data to carry out Kalman filtering under non-linear dynamics.
We numerically demonstrate that KalmanNet overcomes nonlinearities and model mismatch, outperforming classic filtering methods.
arXiv Detail & Related papers (2021-07-21T12:26:46Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.