An End-to-End Multi-objective Ensemble Ranking Framework for Video Recommendation
- URL: http://arxiv.org/abs/2508.05093v1
- Date: Thu, 07 Aug 2025 07:21:46 GMT
- Title: An End-to-End Multi-objective Ensemble Ranking Framework for Video Recommendation
- Authors: Tiantian He, Minzhi Xie, Runtong Li, Xiaoxiao Xu, Jiaqi Yu, Zixiu Wang, Lantao Hu, Han Li, Kun Gai,
- Abstract summary: We propose a novel End-to-end Multi-objective Ensemble Ranking framework (EMER) for the multi-objective ensemble ranking module.<n>EMER enhances by replacing manually-designed formulas with an end-to-end modeling paradigm.<n>Our framework has been deployed in the primary scenarios of Kuaishou, a short video recommendation platform with hundreds of millions of daily active users.
- Score: 20.59012057446529
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel End-to-end Multi-objective Ensemble Ranking framework (EMER) for the multi-objective ensemble ranking module, which is the most critical component of the short video recommendation system. EMER enhances personalization by replacing manually-designed heuristic formulas with an end-to-end modeling paradigm. EMER introduces a meticulously designed loss function to address the fundamental challenge of defining effective supervision for ensemble ranking, where no single ground-truth signal can fully capture user satisfaction. Moreover, EMER introduces novel sample organization method and transformer-based network architecture to capture the comparative relationships among candidates, which are critical for effective ranking. Additionally, we have proposed an offline-online consistent evaluation system to enhance the efficiency of offline model optimization, which is an established yet persistent challenge within the multi-objective ranking domain in industry. Abundant empirical tests are conducted on a real industrial dataset, and the results well demonstrate the effectiveness of our proposed framework. In addition, our framework has been deployed in the primary scenarios of Kuaishou, a short video recommendation platform with hundreds of millions of daily active users, achieving a 1.39% increase in overall App Stay Time and a 0.196% increase in 7-day user Lifetime(LT7), which are substantial improvements.
Related papers
- RecGPT Technical Report [57.84251629878726]
We propose RecGPT, a next-generation framework that places user intent at the center of the recommendation pipeline.<n> RecGPT integrates large language models into key stages of user interest mining, item retrieval, and explanation generation.<n>Online experiments demonstrate that RecGPT achieves consistent performance gains across stakeholders.
arXiv Detail & Related papers (2025-07-30T17:55:06Z) - RecLLM-R1: A Two-Stage Training Paradigm with Reinforcement Learning and Chain-of-Thought v1 [20.92548890511589]
This paper introduces RecLLM-R1, a novel recommendation framework leveraging Large Language Models (LLMs)<n> RecLLM-R1 significantly surpasses existing baseline methods across a spectrum of evaluation metrics, including accuracy, diversity, and novelty.
arXiv Detail & Related papers (2025-06-24T01:39:34Z) - ReAgent-V: A Reward-Driven Multi-Agent Framework for Video Understanding [71.654781631463]
ReAgent-V is a novel agentic video understanding framework.<n>It integrates efficient frame selection with real-time reward generation during inference.<n>Extensive experiments on 12 datasets demonstrate significant gains in generalization and reasoning.
arXiv Detail & Related papers (2025-06-02T04:23:21Z) - On the Role of Feedback in Test-Time Scaling of Agentic AI Workflows [71.92083784393418]
Agentic AI (systems that autonomously plan and act) are becoming widespread, yet their task success rate on complex tasks remains low.<n>Inference-time alignment relies on three components: sampling, evaluation, and feedback.<n>We introduce Iterative Agent Decoding (IAD), a procedure that repeatedly inserts feedback extracted from different forms of critiques.
arXiv Detail & Related papers (2025-04-02T17:40:47Z) - Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning (FL) is a distributed learning paradigm where clients collaboratively train a model while keeping their own data private.<n>We propose Federated-Centric Adaptive Optimization, which is a class of novel federated optimization approaches.
arXiv Detail & Related papers (2025-01-17T04:00:50Z) - A Distributed Collaborative Retrieval Framework Excelling in All Queries and Corpora based on Zero-shot Rank-Oriented Automatic Evaluation [46.33857318525812]
We propose a novel Distributed Collaborative Retrieval Framework (DCRF)<n>It integrates various retrieval models into a unified system and dynamically selects the optimal results for each user's query.<n>It can achieve performance comparable to effective listwise methods like RankGPT and ListT5.
arXiv Detail & Related papers (2024-12-16T14:55:57Z) - Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
We propose a novel Star-Agents framework, which automates the enhancement of data quality across datasets.
The framework initially generates diverse instruction data with multiple LLM agents through a bespoke sampling method.
The generated data undergo a rigorous evaluation using a dual-model method that assesses both difficulty and quality.
arXiv Detail & Related papers (2024-11-21T02:30:53Z) - LiMAML: Personalization of Deep Recommender Models via Meta Learning [13.69036196446634]
We introduce an innovative meta-learning solution tailored to the personalization of models for individual members and other entities.
We leverage the Model-Agnostic Meta Learning (MAML) algorithm to adapt per-task sub-networks using recent user interaction data.
Our approach has enabled the deployment of a range of highly personalized AI models across diverse LinkedIn applications.
arXiv Detail & Related papers (2024-02-23T22:06:36Z) - BOtied: Multi-objective Bayesian optimization with tied multivariate ranks [33.414682601242006]
In this paper, we show a natural connection between non-dominated solutions and the extreme quantile of the joint cumulative distribution function.
Motivated by this link, we propose the Pareto-compliant CDF indicator and the associated acquisition function, BOtied.
Our experiments on a variety of synthetic and real-world problems demonstrate that BOtied outperforms state-of-the-art MOBO acquisition functions.
arXiv Detail & Related papers (2023-06-01T04:50:06Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
This paper aims to recover the structure of rewards and environment dynamics that underlie observed actions in a fixed, finite set of demonstrations from an expert agent.
Accurate models of expertise in executing a task has applications in safety-sensitive applications such as clinical decision making and autonomous driving.
arXiv Detail & Related papers (2023-02-15T04:14:20Z) - JDRec: Practical Actor-Critic Framework for Online Combinatorial
Recommender System [0.0]
A recommender (CR) system feeds a list of items to a user at a time in the result page, in which the user behavior is affected by both contextual information and items.
Despite its importance, it is still a challenge to build a practical CR system, due to the efficiency, dynamics, personalization requirement in online environment.
arXiv Detail & Related papers (2022-07-27T05:47:12Z) - Sample-Rank: Weak Multi-Objective Recommendations Using Rejection
Sampling [0.5156484100374059]
We introduce a method involving multi-goal sampling followed by ranking for user-relevance (Sample-Rank) to nudge recommendations towards multi-objective goals of the marketplace.
The proposed method's novelty is that it reduces the MO recommendation problem to sampling from a desired multi-goal distribution then using it to build a production-friendly learning-to-rank model.
arXiv Detail & Related papers (2020-08-24T09:17:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.