Explicit Instances of Quantum Tanner Codes
- URL: http://arxiv.org/abs/2508.05095v1
- Date: Thu, 07 Aug 2025 07:29:03 GMT
- Title: Explicit Instances of Quantum Tanner Codes
- Authors: Rebecca Katharina Radebold, Stephen D. Bartlett, Andrew C. Doherty,
- Abstract summary: We construct several explicit instances of quantum Tanner codes, a class ofally good quantum low-density parity check (qLDPC) codes.<n>The codes are constructed using dihedral groups and random pairs of classical codes and exhibit high encoding rates, relative distances, and pseudo-thresholds.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We construct several explicit instances of quantum Tanner codes, a class of asymptotically good quantum low-density parity check (qLDPC) codes. The codes are constructed using dihedral groups and random pairs of classical codes and exhibit high encoding rates, relative distances, and pseudo-thresholds. Using the BP+OSD decoder, we demonstrate good performance in the phenomenological and circuit-level noise settings, comparable to the surface code with similar distances. Finally, we conduct an analysis of the space-time overhead incurred by these codes.
Related papers
- Existence and Characterisation of Bivariate Bicycle Codes [0.0]
We show that BB codes provide compact quantum memory with low overhead and enhanced error correcting capabilities.<n>We explore these codes by leveraging their ring structure and predict their dimension as well as conditions on their existence.
arXiv Detail & Related papers (2025-02-24T11:04:15Z) - Optimizing hypergraph product codes with random walks, simulated annealing and reinforcement learning [4.642647756403864]
Hypergraph products are quantum low-density parity-check (LDPC) codes constructed from two classical LDPC codes.<n>In this work, we focus on optimizing performance against the quantum erasure channel.<n>A key advantage of this channel is the existence of an efficient maximum-likelihood decoder.
arXiv Detail & Related papers (2025-01-16T16:01:02Z) - List Decodable Quantum LDPC Codes [49.2205789216734]
We give a construction of Quantum Low-Density Parity Check (QLDPC) codes with near-optimal rate-distance tradeoff.
We get efficiently list decodable QLDPC codes with unique decoders.
arXiv Detail & Related papers (2024-11-06T23:08:55Z) - Decoding Quantum LDPC Codes Using Graph Neural Networks [52.19575718707659]
We propose a novel decoding method for Quantum Low-Density Parity-Check (QLDPC) codes based on Graph Neural Networks (GNNs)
The proposed GNN-based QLDPC decoder exploits the sparse graph structure of QLDPC codes and can be implemented as a message-passing decoding algorithm.
arXiv Detail & Related papers (2024-08-09T16:47:49Z) - Small Quantum Codes from Algebraic Extensions of Generalized Bicycle
Codes [4.299840769087443]
Quantum LDPC codes range from the surface code, which has a vanishing encoding rate, to very promising codes with constant encoding rate and linear distance.
We devise small quantum codes that are inspired by a subset of quantum LDPC codes, known as generalized bicycle (GB) codes.
arXiv Detail & Related papers (2024-01-15T10:38:13Z) - Belief Propagation Decoding of Quantum LDPC Codes with Guided Decimation [55.8930142490617]
We propose a decoder for QLDPC codes based on BP guided decimation (BPGD)
BPGD significantly reduces the BP failure rate due to non-convergence.
arXiv Detail & Related papers (2023-12-18T05:58:07Z) - Quaternary Neural Belief Propagation Decoding of Quantum LDPC Codes with Overcomplete Check Matrices [45.997444794696676]
Quantum low-density parity-check (QLDPC) codes are promising candidates for error correction in quantum computers.<n>One of the major challenges in implementing QLDPC codes in quantum computers is the lack of a universal decoder.<n>We first propose to decode QLDPC codes with a belief propagation (BP) decoder operating on overcomplete check matrices.<n>We extend the neural BP (NBP) decoder, which was originally studied for suboptimal binary BP decoding of QLPDC codes, to quaternary BP decoders.
arXiv Detail & Related papers (2023-08-16T08:24:06Z) - Single-shot decoding of good quantum LDPC codes [38.12919328528587]
We prove that quantum Tanner codes facilitate single-shot quantum error correction (QEC) of adversarial noise.
We show that in order to suppress errors over multiple repeated rounds of QEC, it suffices to run the parallel decoding algorithm for constant time in each round.
arXiv Detail & Related papers (2023-06-21T18:00:01Z) - Quantum spherical codes [55.33545082776197]
We introduce a framework for constructing quantum codes defined on spheres by recasting such codes as quantum analogues of the classical spherical codes.
We apply this framework to bosonic coding, obtaining multimode extensions of the cat codes that can outperform previous constructions.
arXiv Detail & Related papers (2023-02-22T19:00:11Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
We propose to decode QLDPC codes based on a check matrix with redundant rows, generated from linear combinations of the rows in the original check matrix.
This approach yields a significant improvement in decoding performance with the additional advantage of very low decoding latency.
arXiv Detail & Related papers (2022-12-20T13:41:27Z) - Decoding quantum Tanner codes [0.38073142980732994]
We introduce sequential and parallel decoders for quantum Tanner codes.
Our decoders provably correct arbitrary errors of weight linear in the code length.
The same decoders are easily adapted to the expander lifted product codes of Panteleev and Kalachev.
arXiv Detail & Related papers (2022-08-10T19:50:18Z) - Decoding Across the Quantum LDPC Code Landscape [4.358626952482686]
We show that belief propagation combined with ordered statistics post-processing is a general decoder for quantum low density parity check codes.
We run numerical simulations of the decoder applied to three families of hypergraph product code: topological codes, fixed-rate random codes and a new class of codes that we call semi-topological codes.
arXiv Detail & Related papers (2020-05-14T14:33:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.