Decoding Across the Quantum LDPC Code Landscape
- URL: http://arxiv.org/abs/2005.07016v2
- Date: Tue, 29 Dec 2020 12:29:32 GMT
- Title: Decoding Across the Quantum LDPC Code Landscape
- Authors: Joschka Roffe, David R. White, Simon Burton, Earl T. Campbell
- Abstract summary: We show that belief propagation combined with ordered statistics post-processing is a general decoder for quantum low density parity check codes.
We run numerical simulations of the decoder applied to three families of hypergraph product code: topological codes, fixed-rate random codes and a new class of codes that we call semi-topological codes.
- Score: 4.358626952482686
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that belief propagation combined with ordered statistics
post-processing is a general decoder for quantum low density parity check codes
constructed from the hypergraph product. To this end, we run numerical
simulations of the decoder applied to three families of hypergraph product
code: topological codes, fixed-rate random codes and a new class of codes that
we call semi-topological codes. Our new code families share properties of both
topological and random hypergraph product codes, with a construction that
allows for a finely-controlled trade-off between code threshold and stabilizer
locality. Our results indicate thresholds across all three families of
hypergraph product code, and provide evidence of exponential suppression in the
low error regime. For the Toric code, we observe a threshold in the range
$9.9\pm0.2\%$. This result improves upon previous quantum decoders based on
belief propagation, and approaches the performance of the minimum weight
perfect matching algorithm. We expect semi-topological codes to have the same
threshold as Toric codes, as they are identical in the bulk, and we present
numerical evidence supporting this observation.
Related papers
- Factor Graph Optimization of Error-Correcting Codes for Belief Propagation Decoding [62.25533750469467]
Low-Density Parity-Check (LDPC) codes possess several advantages over other families of codes.
The proposed approach is shown to outperform the decoding performance of existing popular codes by orders of magnitude.
arXiv Detail & Related papers (2024-06-09T12:08:56Z) - Small Quantum Codes from Algebraic Extensions of Generalized Bicycle
Codes [4.299840769087443]
Quantum LDPC codes range from the surface code, which has a vanishing encoding rate, to very promising codes with constant encoding rate and linear distance.
We devise small quantum codes that are inspired by a subset of quantum LDPC codes, known as generalized bicycle (GB) codes.
arXiv Detail & Related papers (2024-01-15T10:38:13Z) - Lift-Connected Surface Codes [1.4767596539913115]
We use the recently introduced lifted product to construct a family of Quantum Low Density Parity Check Codes (QLDPC codes)
The codes we obtain can be viewed as stacks of surface codes that are interconnected, leading to the name lift-connected surface (LCS) codes.
For example, already at moderate numbers of physical qubits in the order of tens, LCS codes of equal size have lower logical error rate or similarly, require fewer qubits for a fixed target logical error rate.
arXiv Detail & Related papers (2024-01-05T17:22:49Z) - Closest lattice point decoding for multimode Gottesman-Kitaev-Preskill
codes [0.8192907805418581]
Quantum error correction (QEC) plays an essential role in fault-tolerantly realizing quantum algorithms of practical interest.
We study multimode Gottesman-Kitaev-Preskill (GKP) codes, encoding a qubit in many oscillators.
We implement a closest point decoding strategy for correcting random shift errors.
arXiv Detail & Related papers (2023-03-08T16:42:42Z) - Gaussian conversion protocol for heralded generation of qunaught states [66.81715281131143]
bosonic codes map qubit-type quantum information onto the larger bosonic Hilbert space.
We convert between two instances of these codes GKP qunaught states and four-foldsymmetric binomial states corresponding to a zero-logical encoded qubit.
We obtain GKP qunaught states with a fidelity of over 98% and a probability of approximately 3.14%.
arXiv Detail & Related papers (2023-01-24T14:17:07Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
We propose to decode QLDPC codes based on a check matrix with redundant rows, generated from linear combinations of the rows in the original check matrix.
This approach yields a significant improvement in decoding performance with the additional advantage of very low decoding latency.
arXiv Detail & Related papers (2022-12-20T13:41:27Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Finding the disjointness of stabilizer codes is NP-complete [77.34726150561087]
We show that the problem of calculating the $c-disjointness, or even approximating it to within a constant multiplicative factor, is NP-complete.
We provide bounds on the disjointness for various code families, including the CSS codes,$d codes and hypergraph codes.
Our results indicate that finding fault-tolerant logical gates for generic quantum error-correcting codes is a computationally challenging task.
arXiv Detail & Related papers (2021-08-10T15:00:20Z) - Combining hard and soft decoders for hypergraph product codes [0.3326320568999944]
Hypergraph product codes are constant-rate quantum low-density parity-check (LDPC) codes equipped with a linear-time decoder called small-set-flip (SSF)
This decoder displays sub-optimal performance in practice and requires very large error correcting codes to be effective.
We present new hybrid decoders that combine the belief propagation (BP) algorithm with the SSF decoder.
arXiv Detail & Related papers (2020-04-23T14:48:05Z) - Cellular automaton decoders for topological quantum codes with noisy
measurements and beyond [68.8204255655161]
We propose an error correction procedure based on a cellular automaton, the sweep rule, which is applicable to a broad range of codes beyond topological quantum codes.
For simplicity, we focus on the three-dimensional (3D) toric code on the rhombic dodecahedral lattice with boundaries and prove that the resulting local decoder has a non-zero error threshold.
We find that this error correction procedure is remarkably robust against measurement errors and is also essentially insensitive to the details of the lattice and noise model.
arXiv Detail & Related papers (2020-04-15T18:00:01Z) - Single-Shot Decoding of Linear Rate LDPC Quantum Codes with High
Performance [5.33024001730262]
We construct and analyze a family of low-density parity check (LDPC) quantum codes with a linear encoding rate, scaling distance and efficient decoding schemes.
The code family is based on tessellations of closed, four-dimensional, hyperbolic, as first suggested by Guth and Lubotzky.
arXiv Detail & Related papers (2020-01-10T17:21:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.