HFedATM: Hierarchical Federated Domain Generalization via Optimal Transport and Regularized Mean Aggregation
- URL: http://arxiv.org/abs/2508.05135v1
- Date: Thu, 07 Aug 2025 08:14:52 GMT
- Title: HFedATM: Hierarchical Federated Domain Generalization via Optimal Transport and Regularized Mean Aggregation
- Authors: Thinh Nguyen, Trung Phan, Binh T. Nguyen, Khoa D Doan, Kok-Seng Wong,
- Abstract summary: Federated Learning (FL) is a decentralized approach where multiple clients collaboratively train a shared global model without sharing their raw data.<n>This paper introduces Hierarchical Federated Domain Generalization (HFedDG), a novel scenario designed to investigate domain shift within hierarchical architectures.
- Score: 12.655334562608314
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) is a decentralized approach where multiple clients collaboratively train a shared global model without sharing their raw data. Despite its effectiveness, conventional FL faces scalability challenges due to excessive computational and communication demands placed on a single central server as the number of participating devices grows. Hierarchical Federated Learning (HFL) addresses these issues by distributing model aggregation tasks across intermediate nodes (stations), thereby enhancing system scalability and robustness against single points of failure. However, HFL still suffers from a critical yet often overlooked limitation: domain shift, where data distributions vary significantly across different clients and stations, reducing model performance on unseen target domains. While Federated Domain Generalization (FedDG) methods have emerged to improve robustness to domain shifts, their integration into HFL frameworks remains largely unexplored. In this paper, we formally introduce Hierarchical Federated Domain Generalization (HFedDG), a novel scenario designed to investigate domain shift within hierarchical architectures. Specifically, we propose HFedATM, a hierarchical aggregation method that first aligns the convolutional filters of models from different stations through Filter-wise Optimal Transport Alignment and subsequently merges aligned models using a Shrinkage-aware Regularized Mean Aggregation. Our extensive experimental evaluations demonstrate that HFedATM significantly boosts the performance of existing FedDG baselines across multiple datasets and maintains computational and communication efficiency. Moreover, theoretical analyses indicate that HFedATM achieves tighter generalization error bounds compared to standard hierarchical averaging, resulting in faster convergence and stable training behavior.
Related papers
- Boosting Domain Generalized and Adaptive Detection with Diffusion Models: Fitness, Generalization, and Transferability [0.0]
Detectors often suffer from performance drop due to domain gap between training and testing data.<n>Recent methods explore diffusion models applied to domain generalization (DG) and adaptation (DA) tasks.<n>We propose to tackle these problems by extracting intermediate features from a single-step diffusion process.
arXiv Detail & Related papers (2025-06-26T06:42:23Z) - NDCG-Consistent Softmax Approximation with Accelerated Convergence [67.10365329542365]
We propose novel loss formulations that align directly with ranking metrics.<n>We integrate the proposed RG losses with the highly efficient Alternating Least Squares (ALS) optimization method.<n> Empirical evaluations on real-world datasets demonstrate that our approach achieves comparable or superior ranking performance.
arXiv Detail & Related papers (2025-06-11T06:59:17Z) - Let Synthetic Data Shine: Domain Reassembly and Soft-Fusion for Single Domain Generalization [68.41367635546183]
Single Domain Generalization aims to train models with consistent performance across diverse scenarios using data from a single source.<n>We propose Discriminative Domain Reassembly and Soft-Fusion (DRSF), a training framework leveraging synthetic data to improve model generalization.
arXiv Detail & Related papers (2025-03-17T18:08:03Z) - Integrating Frequency Guidance into Multi-source Domain Generalization for Bearing Fault Diagnosis [24.85752780864944]
We propose the Fourier-based Augmentation Reconstruction Network, namely FARNet.<n>The network comprises an amplitude spectrum sub-network and a phase spectrum sub-network, sequentially reducing the discrepancy between the source and target domains.<n>To refine the decision boundary of our model output compared to conventional triplet loss, we propose a manifold triplet loss to contribute to generalization.
arXiv Detail & Related papers (2025-02-01T20:23:03Z) - FedDAG: Federated Domain Adversarial Generation Towards Generalizable Medical Image Analysis [13.028776283830686]
Federated Domain Adversarial Generation (FedDAG) aims to simulate the domain shift and improve the model generalization.<n>It generates novel-style images by maximizing the instance-level feature discrepancy between original and generated images.<n>Experiments across four medical benchmarks demonstrate FedDAG's ability to enhance generalization in federated medical scenarios.
arXiv Detail & Related papers (2025-01-22T07:08:45Z) - Multisource Collaborative Domain Generalization for Cross-Scene Remote Sensing Image Classification [57.945437355714155]
Cross-scene image classification aims to transfer prior knowledge of ground materials to annotate regions with different distributions.<n>Existing approaches focus on single-source domain generalization to unseen target domains.<n>We propose a novel multi-source collaborative domain generalization framework (MS-CDG) based on homogeneity and heterogeneity characteristics of multi-source remote sensing data.
arXiv Detail & Related papers (2024-12-05T06:15:08Z) - FedCCRL: Federated Domain Generalization with Cross-Client Representation Learning [4.703379311088474]
Domain Generalization (DG) aims to train models that can effectively generalize to unseen domains.
In Federated Learning (FL), where clients collaboratively train a model without directly sharing their data, most existing DG algorithms are not directly applicable to the FL setting.
We propose FedCCRL, a lightweight federated domain generalization method that significantly improves the model's generalization ability while preserving privacy.
arXiv Detail & Related papers (2024-10-15T04:44:21Z) - Efficiently Assemble Normalization Layers and Regularization for Federated Domain Generalization [1.1534313664323637]
Domain shift is a formidable issue in Machine Learning that causes a model to suffer from performance degradation when tested on unseen domains.
FedDG attempts to train a global model using collaborative clients in a privacy-preserving manner that can generalize well to unseen clients possibly with domain shift.
Here, we introduce a novel architectural method for FedDG, namely gPerXAN, which relies on a normalization scheme working with a guiding regularizer.
arXiv Detail & Related papers (2024-03-22T20:22:08Z) - Hypernetwork-Driven Model Fusion for Federated Domain Generalization [26.492360039272942]
Federated Learning (FL) faces significant challenges with domain shifts in heterogeneous data.
We propose a robust framework, coined as hypernetwork-based Federated Fusion (hFedF), using hypernetworks for non-linear aggregation.
Our method employs client-specific embeddings and gradient alignment techniques to manage domain generalization effectively.
arXiv Detail & Related papers (2024-02-10T15:42:03Z) - FedWon: Triumphing Multi-domain Federated Learning Without Normalization [50.49210227068574]
Federated learning (FL) enhances data privacy with collaborative in-situ training on decentralized clients.
However, Federated learning (FL) encounters challenges due to non-independent and identically distributed (non-i.i.d) data.
We propose a novel method called Federated learning Without normalizations (FedWon) to address the multi-domain problem in FL.
arXiv Detail & Related papers (2023-06-09T13:18:50Z) - Federated and Generalized Person Re-identification through Domain and
Feature Hallucinating [88.77196261300699]
We study the problem of federated domain generalization (FedDG) for person re-identification (re-ID)
We propose a novel method, called "Domain and Feature Hallucinating (DFH)", to produce diverse features for learning generalized local and global models.
Our method achieves the state-of-the-art performance for FedDG on four large-scale re-ID benchmarks.
arXiv Detail & Related papers (2022-03-05T09:15:13Z) - Decentralized Local Stochastic Extra-Gradient for Variational
Inequalities [125.62877849447729]
We consider distributed variational inequalities (VIs) on domains with the problem data that is heterogeneous (non-IID) and distributed across many devices.
We make a very general assumption on the computational network that covers the settings of fully decentralized calculations.
We theoretically analyze its convergence rate in the strongly-monotone, monotone, and non-monotone settings.
arXiv Detail & Related papers (2021-06-15T17:45:51Z) - A Unified Theory of Decentralized SGD with Changing Topology and Local
Updates [70.9701218475002]
We introduce a unified convergence analysis of decentralized communication methods.
We derive universal convergence rates for several applications.
Our proofs rely on weak assumptions.
arXiv Detail & Related papers (2020-03-23T17:49:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.