Graph-based Event Log Repair
- URL: http://arxiv.org/abs/2508.05145v1
- Date: Thu, 07 Aug 2025 08:26:16 GMT
- Title: Graph-based Event Log Repair
- Authors: Sebastiano Dissegna, Chiara Di Francescomarino, Massimiliano Ronzani,
- Abstract summary: In real-world event logs, the acquisition of data can be non-trivial.<n>A new type of Deep Learning model that is capable of handling input data encoded as graphs has emerged, namely Graph Neural Networks.<n>In this work, we focus on the development of a Heterogeneous Graph Neural Network model that, given a trace containing some incomplete events, will return the full set of attributes missing from those events.
- Score: 3.7869440522823674
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The quality of event logs in Process Mining is crucial when applying any form of analysis to them. In real-world event logs, the acquisition of data can be non-trivial (e.g., due to the execution of manual activities and related manual recording or to issues in collecting, for each event, all its attributes), and often may end up with events recorded with some missing information. Standard approaches to the problem of trace (or log) reconstruction either require the availability of a process model that is used to fill missing values by leveraging different reasoning techniques or employ a Machine Learning/Deep Learning model to restore the missing values by learning from similar cases. In recent years, a new type of Deep Learning model that is capable of handling input data encoded as graphs has emerged, namely Graph Neural Networks. Graph Neural Network models, and even more so Heterogeneous Graph Neural Networks, offer the advantage of working with a more natural representation of complex multi-modal sequences like the execution traces in Process Mining, allowing for more expressive and semantically rich encodings. In this work, we focus on the development of a Heterogeneous Graph Neural Network model that, given a trace containing some incomplete events, will return the full set of attributes missing from those events. We evaluate our work against a state-of-the-art approach leveraging autoencoders on two synthetic logs and four real event logs, on different types of missing values. Different from state-of-the-art model-free approaches, which mainly focus on repairing a subset of event attributes, the proposed approach shows very good performance in reconstructing all different event attributes.
Related papers
- Dual-level Mixup for Graph Few-shot Learning with Fewer Tasks [23.07584018576066]
We propose a SiMple yet effectIve approach for graph few-shot Learning with fEwer tasks, named SMILE.<n>We introduce a dual-level mixup strategy, encompassing both within-task and across-task mixup, to simultaneously enrich the available nodes and tasks in meta-learning.<n> Empirically, SMILE consistently outperforms other competitive models by a large margin across all evaluated datasets with in-domain and cross-domain settings.
arXiv Detail & Related papers (2025-02-19T23:59:05Z) - Towards Graph Foundation Models: Learning Generalities Across Graphs via Task-Trees [50.78679002846741]
We propose a novel approach to cross-task generalization in graphs via task-trees.<n>We show that pretraining a graph neural network (GNN) on diverse task-trees with a reconstruction objective induces transferable knowledge.<n>This enables efficient adaptation to downstream tasks with minimal fine-tuning.
arXiv Detail & Related papers (2024-12-21T02:07:43Z) - Large Language Models as Realistic Microservice Trace Generators [54.85489678342595]
Workload traces are essential to understand complex computer systems' behavior and manage processing and memory resources.<n>This paper proposes a first-of-a-kind approach that relies on training a large language model to generate synthetic workload traces.<n>Our model adapts to downstream trace-related tasks, such as predicting key trace features and infilling missing data.
arXiv Detail & Related papers (2024-12-16T12:48:04Z) - Detecting Anomalous Events in Object-centric Business Processes via
Graph Neural Networks [55.583478485027]
This study proposes a novel framework for anomaly detection in business processes.
We first reconstruct the process dependencies of the object-centric event logs as attributed graphs.
We then employ a graph convolutional autoencoder architecture to detect anomalous events.
arXiv Detail & Related papers (2024-02-14T14:17:56Z) - Deep graph kernel point processes [17.74234892097879]
This paper presents a novel point process model for discrete event data over graphs, where the event interaction occurs within a latent graph structure.
The key idea is to represent the influence kernel by Graph Neural Networks (GNN) to capture the underlying graph structure.
Compared with prior works focusing on directly modeling the conditional intensity function using neural networks, our kernel presentation herds the repeated event influence patterns more effectively.
arXiv Detail & Related papers (2023-06-20T06:15:19Z) - A Graph-Enhanced Click Model for Web Search [67.27218481132185]
We propose a novel graph-enhanced click model (GraphCM) for web search.
We exploit both intra-session and inter-session information for the sparsity and cold-start problems.
arXiv Detail & Related papers (2022-06-17T08:32:43Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - Process Discovery Using Graph Neural Networks [2.6381163133447836]
We introduce a technique for training an ML-based model D using graphal neural networks.
D translates a given input event log into a sound Petri net.
We show that training D on synthetically generated pairs of input logs and output models allows D to translate previously unseen synthetic and several real-life event logs into sound.
arXiv Detail & Related papers (2021-09-13T10:04:34Z) - Structural Information Preserving for Graph-to-Text Generation [59.00642847499138]
The task of graph-to-text generation aims at producing sentences that preserve the meaning of input graphs.
We propose to tackle this problem by leveraging richer training signals that can guide our model for preserving input information.
Experiments on two benchmarks for graph-to-text generation show the effectiveness of our approach over a state-of-the-art baseline.
arXiv Detail & Related papers (2021-02-12T20:09:01Z) - A Unifying Generative Model for Graph Learning Algorithms: Label
Propagation, Graph Convolutions, and Combinations [39.8498896531672]
Semi-supervised learning on graphs is a widely applicable problem in network science and machine learning.
We develop a Markov random field model for the data generation process of node attributes.
We show that label propagation, a linearized graph convolutional network, and their combination can all be derived as conditional expectations.
arXiv Detail & Related papers (2021-01-19T17:07:08Z) - Anomaly Detection for Aggregated Data Using Multi-Graph Autoencoder [21.81622481466591]
We focus on creating an Anomaly detection models for system logs.
We present a thorough analysis of the aggregated data and the relationships between aggregated events.
We propose Multiple-graphs autoencoder MGAE, a novel convolutional graphs-autoencoder model.
arXiv Detail & Related papers (2021-01-11T17:38:42Z) - Neural Language Modeling for Contextualized Temporal Graph Generation [49.21890450444187]
This paper presents the first study on using large-scale pre-trained language models for automated generation of an event-level temporal graph for a document.
arXiv Detail & Related papers (2020-10-20T07:08:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.