Anomaly Detection for Aggregated Data Using Multi-Graph Autoencoder
- URL: http://arxiv.org/abs/2101.04053v1
- Date: Mon, 11 Jan 2021 17:38:42 GMT
- Title: Anomaly Detection for Aggregated Data Using Multi-Graph Autoencoder
- Authors: Tomer Meirman, Roni Stern, Gilad Katz
- Abstract summary: We focus on creating an Anomaly detection models for system logs.
We present a thorough analysis of the aggregated data and the relationships between aggregated events.
We propose Multiple-graphs autoencoder MGAE, a novel convolutional graphs-autoencoder model.
- Score: 21.81622481466591
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In data systems, activities or events are continuously collected in the field
to trace their proper executions. Logging, which means recording sequences of
events, can be used for analyzing system failures and malfunctions, and
identifying the causes and locations of such issues. In our research we focus
on creating an Anomaly detection models for system logs. The task of anomaly
detection is identifying unexpected events in dataset, which differ from the
normal behavior. Anomaly detection models also assist in data systems analysis
tasks.
Modern systems may produce such a large amount of events monitoring every
individual event is not feasible. In such cases, the events are often
aggregated over a fixed period of time, reporting the number of times every
event has occurred in that time period. This aggregation facilitates scaling,
but requires a different approach for anomaly detection. In this research, we
present a thorough analysis of the aggregated data and the relationships
between aggregated events. Based on the initial phase of our research we
present graphs representations of our aggregated dataset, which represent the
different relationships between aggregated instances in the same context.
Using the graph representation, we propose Multiple-graphs autoencoder MGAE,
a novel convolutional graphs-autoencoder model which exploits the relationships
of the aggregated instances in our unique dataset. MGAE outperforms standard
graph-autoencoder models and the different experiments. With our novel MGAE we
present 60% decrease in reconstruction error in comparison to standard graph
autoencoder, which is expressed in reconstructing high-degree relationships.
Related papers
- Hypergraph-based multi-scale spatio-temporal graph convolution network for Time-Series anomaly detection [8.878898677348086]
Multi-dimensional time series anomaly detection technology plays an important role in many fields including aerospace, water treatment, cloud service providers, etc.
It is becoming increasingly challenging to perform effective and accurate anomaly detection in high-dimensional and complex data sets.
We propose a hypergraph basedtemporal graph convolutional network model STGCN_Hyper, which explicitly captures high-order, multi-hop correlations between multiple variables.
Our model can flexibly learn the multi-scale time series features in the data and the dependencies between features, and outperforms most existing baseline models in terms of precision, recall, F1-score on anomaly detection
arXiv Detail & Related papers (2024-10-29T17:19:18Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARC is a generalist GAD approach that enables a one-for-all'' GAD model to detect anomalies across various graph datasets on-the-fly.
equipped with in-context learning, ARC can directly extract dataset-specific patterns from the target dataset.
Extensive experiments on multiple benchmark datasets from various domains demonstrate the superior anomaly detection performance, efficiency, and generalizability of ARC.
arXiv Detail & Related papers (2024-05-27T02:42:33Z) - Detecting Anomalous Events in Object-centric Business Processes via
Graph Neural Networks [55.583478485027]
This study proposes a novel framework for anomaly detection in business processes.
We first reconstruct the process dependencies of the object-centric event logs as attributed graphs.
We then employ a graph convolutional autoencoder architecture to detect anomalous events.
arXiv Detail & Related papers (2024-02-14T14:17:56Z) - MLAD: A Unified Model for Multi-system Log Anomaly Detection [35.68387377240593]
We propose MLAD, a novel anomaly detection model that incorporates semantic relational reasoning across multiple systems.
Specifically, we employ Sentence-bert to capture the similarities between log sequences and convert them into highly-dimensional learnable semantic vectors.
We revamp the formulas of the Attention layer to discern the significance of each keyword in the sequence and model the overall distribution of the multi-system dataset.
arXiv Detail & Related papers (2024-01-15T12:51:13Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - ADAMM: Anomaly Detection of Attributed Multi-graphs with Metadata: A
Unified Neural Network Approach [39.211176955683285]
We propose ADAMM, a novel graph neural network model that handles directed multi-graphs.
ADAMM fuses metadata and graph-level representation learning through an unsupervised anomaly detection objective.
arXiv Detail & Related papers (2023-11-13T14:19:36Z) - GLAD: Content-aware Dynamic Graphs For Log Anomaly Detection [49.9884374409624]
GLAD is a Graph-based Log Anomaly Detection framework designed to detect anomalies in system logs.
We introduce GLAD, a Graph-based Log Anomaly Detection framework designed to detect anomalies in system logs.
arXiv Detail & Related papers (2023-09-12T04:21:30Z) - Multivariate Time Series Anomaly Detection via Dynamic Graph Forecasting [0.0]
We propose DyGraphAD, a time series anomaly detection framework based upon a list of dynamic inter-series graphs.
The core idea is to detect anomalies based on the deviation of inter-series relationships and intra-series temporal patterns from normal to anomalous states.
Our numerical experiments on real-world datasets demonstrate that DyGraphAD has superior performance than baseline anomaly detection approaches.
arXiv Detail & Related papers (2023-02-04T01:27:01Z) - CEP3: Community Event Prediction with Neural Point Process on Graph [59.434777403325604]
We propose a novel model combining Graph Neural Networks and Marked Temporal Point Process (MTPP)
Our experiments demonstrate the superior performance of our model in terms of both model accuracy and training efficiency.
arXiv Detail & Related papers (2022-05-21T15:30:25Z) - From Unsupervised to Few-shot Graph Anomaly Detection: A Multi-scale Contrastive Learning Approach [26.973056364587766]
Anomaly detection from graph data is an important data mining task in many applications such as social networks, finance, and e-commerce.
We propose a novel framework, graph ANomaly dEtection framework with Multi-scale cONtrastive lEarning (ANEMONE in short)
By using a graph neural network as a backbone to encode the information from multiple graph scales (views), we learn better representation for nodes in a graph.
arXiv Detail & Related papers (2022-02-11T09:45:11Z) - A Background-Agnostic Framework with Adversarial Training for Abnormal
Event Detection in Video [120.18562044084678]
Abnormal event detection in video is a complex computer vision problem that has attracted significant attention in recent years.
We propose a background-agnostic framework that learns from training videos containing only normal events.
arXiv Detail & Related papers (2020-08-27T18:39:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.