論文の概要: Near Optimal Inference for the Best-Performing Algorithm
- arxiv url: http://arxiv.org/abs/2508.05173v1
- Date: Thu, 07 Aug 2025 09:08:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-08 18:59:39.779542
- Title: Near Optimal Inference for the Best-Performing Algorithm
- Title(参考訳): 最良性能アルゴリズムにおける近接最適推論
- Authors: Amichai Painsky,
- Abstract要約: 本稿では,サブセット選択問題に対する新しい枠組みを提案する。
我々は、現在知られている手法を大幅に改善する高信頼と有限サンプルスキームを提供する。
- 参考スコア(独自算出の注目度): 6.5268245109828005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Consider a collection of competing machine learning algorithms. Given their performance on a benchmark of datasets, we would like to identify the best performing algorithm. Specifically, which algorithm is most likely to rank highest on a future, unseen dataset. A natural approach is to select the algorithm that demonstrates the best performance on the benchmark. However, in many cases the performance differences are marginal and additional candidates may also be considered. This problem is formulated as subset selection for multinomial distributions. Formally, given a sample from a countable alphabet, our goal is to identify a minimal subset of symbols that includes the most frequent symbol in the population with high confidence. In this work, we introduce a novel framework for the subset selection problem. We provide both asymptotic and finite-sample schemes that significantly improve upon currently known methods. In addition, we provide matching lower bounds, demonstrating the favorable performance of our proposed schemes.
- Abstract(参考訳): 競合する機械学習アルゴリズムの集合を考える。
データセットのベンチマークでのパフォーマンスを考えると、最高のパフォーマンスのアルゴリズムを特定したいと思います。
具体的には、どのアルゴリズムが将来、目に見えないデータセットで最上位にランクされる可能性が高い。
自然なアプローチは、ベンチマークで最高のパフォーマンスを示すアルゴリズムを選択することである。
しかし、多くの場合、パフォーマンスの違いは限界であり、追加の候補も考慮される。
この問題は多項分布に対する部分集合選択として定式化される。
形式的には、可算なアルファベットのサンプルを考えると、我々のゴールは、信頼度の高い人口で最も頻繁なシンボルを含む最小限のシンボルのサブセットを特定することである。
本研究では,サブセット選択問題に対する新しいフレームワークを提案する。
現在知られている手法を大幅に改善する漸近的および有限サンプルスキームを提供する。
さらに,提案手法の有効性を実証し,一致した下限を提供する。
関連論文リスト
- Optimizing NOTEARS Objectives via Topological Swaps [41.18829644248979]
本稿では,候補アルゴリズムの集合に有効な手法を提案する。
内部レベルでは、対象が与えられた場合、オフ・ザ・アート制約を利用する。
提案手法は,他のアルゴリズムのスコアを大幅に改善する。
論文 参考訳(メタデータ) (2023-05-26T21:49:37Z) - Subset-Based Instance Optimality in Private Estimation [23.173651165908282]
我々は、幅広いデータセット特性を推定する際に、インスタンス最適性の概念を実現するプライベートアルゴリズムを構築する方法を示す。
提案アルゴリズムは,分布的な仮定の下で,既存のアルゴリズムの性能を同時に一致または超過する。
論文 参考訳(メタデータ) (2023-03-01T18:49:10Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
オンラインアルゴリズム選択(OAS)では、アルゴリズム問題クラスのインスタンスがエージェントに次々に提示され、エージェントは、固定された候補アルゴリズムセットから、おそらく最高のアルゴリズムを迅速に選択する必要がある。
SAT(Satisfiability)のような決定問題に対して、品質は一般的にアルゴリズムのランタイムを指す。
本研究では,OASのマルチアームバンディットアルゴリズムを再検討し,この問題に対処する能力について議論する。
ランタイム指向の損失に適応し、時間的地平線に依存しない空間的・時間的複雑さを維持しながら、部分的に検閲されたデータを可能にする。
論文 参考訳(メタデータ) (2021-09-13T18:10:52Z) - Estimating leverage scores via rank revealing methods and randomization [50.591267188664666]
任意のランクの正方形密度あるいはスパース行列の統計レバレッジスコアを推定するアルゴリズムについて検討した。
提案手法は,高密度およびスパースなランダム化次元性還元変換の合成と階調明細化法を組み合わせることに基づく。
論文 参考訳(メタデータ) (2021-05-23T19:21:55Z) - Benchmarking Simulation-Based Inference [5.3898004059026325]
確率的モデリングの最近の進歩は、確率の数値的評価を必要としないシミュレーションに基づく推論アルゴリズムを多数もたらした。
推論タスクと適切なパフォーマンス指標を備えたベンチマークを,アルゴリズムの初期選択とともに提供する。
性能指標の選択は重要であり、最先端のアルゴリズムでさえ改善の余地があり、逐次推定によりサンプリング効率が向上することがわかった。
論文 参考訳(メタデータ) (2021-01-12T18:31:22Z) - Online Model Selection for Reinforcement Learning with Function
Approximation [50.008542459050155]
我々は、$tildeO(L5/6 T2/3)$ regretで最適な複雑性に適応するメタアルゴリズムを提案する。
また、メタアルゴリズムは、インスタンス依存の後悔境界を著しく改善することを示す。
論文 参考訳(メタデータ) (2020-11-19T10:00:54Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z) - Ranking a set of objects: a graph based least-square approach [70.7866286425868]
同一労働者の群集によるノイズの多いペアワイズ比較から始まる$N$オブジェクトのランク付けの問題について考察する。
品質評価のために,最小二乗内在的最適化基準に依存する非適応的ランキングアルゴリズムのクラスを提案する。
論文 参考訳(メタデータ) (2020-02-26T16:19:09Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
我々は,数千の候補アルゴリズムの固定セットを考慮に入れた,極端なアルゴリズム選択(XAS)の設定を提案する。
我々は、XAS設定に対する最先端のAS技術の適用性を評価し、Dyadic特徴表現を利用したアプローチを提案する。
論文 参考訳(メタデータ) (2020-01-29T09:40:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。