Near Optimal Inference for the Best-Performing Algorithm
- URL: http://arxiv.org/abs/2508.05173v1
- Date: Thu, 07 Aug 2025 09:08:06 GMT
- Title: Near Optimal Inference for the Best-Performing Algorithm
- Authors: Amichai Painsky,
- Abstract summary: We introduce a novel framework for the subset selection problem.<n>We provide both high confidence and finite-sample schemes that significantly improve upon currently known methods.
- Score: 6.5268245109828005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Consider a collection of competing machine learning algorithms. Given their performance on a benchmark of datasets, we would like to identify the best performing algorithm. Specifically, which algorithm is most likely to rank highest on a future, unseen dataset. A natural approach is to select the algorithm that demonstrates the best performance on the benchmark. However, in many cases the performance differences are marginal and additional candidates may also be considered. This problem is formulated as subset selection for multinomial distributions. Formally, given a sample from a countable alphabet, our goal is to identify a minimal subset of symbols that includes the most frequent symbol in the population with high confidence. In this work, we introduce a novel framework for the subset selection problem. We provide both asymptotic and finite-sample schemes that significantly improve upon currently known methods. In addition, we provide matching lower bounds, demonstrating the favorable performance of our proposed schemes.
Related papers
- Optimizing NOTEARS Objectives via Topological Swaps [41.18829644248979]
In this paper, we develop an effective method for a set of candidate algorithms.
At the inner level, given a subject, we utilize off-the-the-art constraints.
The proposed method significantly improves the score of other algorithms.
arXiv Detail & Related papers (2023-05-26T21:49:37Z) - Subset-Based Instance Optimality in Private Estimation [23.173651165908282]
We show how to construct private algorithms that achieve our notion of instance optimality when estimating a broad class of dataset properties.
Our algorithm simultaneously matches or exceeds the performance of existing algorithms under a range of distributional assumptions.
arXiv Detail & Related papers (2023-03-01T18:49:10Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms.
For decision problems such as satisfiability (SAT), quality typically refers to the algorithm's runtime.
In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem.
We adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon.
arXiv Detail & Related papers (2021-09-13T18:10:52Z) - Estimating leverage scores via rank revealing methods and randomization [50.591267188664666]
We study algorithms for estimating the statistical leverage scores of rectangular dense or sparse matrices of arbitrary rank.
Our approach is based on combining rank revealing methods with compositions of dense and sparse randomized dimensionality reduction transforms.
arXiv Detail & Related papers (2021-05-23T19:21:55Z) - Benchmarking Simulation-Based Inference [5.3898004059026325]
Recent advances in probabilistic modelling have led to a large number of simulation-based inference algorithms which do not require numerical evaluation of likelihoods.
We provide a benchmark with inference tasks and suitable performance metrics, with an initial selection of algorithms.
We found that the choice of performance metric is critical, that even state-of-the-art algorithms have substantial room for improvement, and that sequential estimation improves sample efficiency.
arXiv Detail & Related papers (2021-01-12T18:31:22Z) - Online Model Selection for Reinforcement Learning with Function
Approximation [50.008542459050155]
We present a meta-algorithm that adapts to the optimal complexity with $tildeO(L5/6 T2/3)$ regret.
We also show that the meta-algorithm automatically admits significantly improved instance-dependent regret bounds.
arXiv Detail & Related papers (2020-11-19T10:00:54Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Ranking a set of objects: a graph based least-square approach [70.7866286425868]
We consider the problem of ranking $N$ objects starting from a set of noisy pairwise comparisons provided by a crowd of equal workers.
We propose a class of non-adaptive ranking algorithms that rely on a least-squares intrinsic optimization criterion for the estimation of qualities.
arXiv Detail & Related papers (2020-02-26T16:19:09Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.