High-Dimensional Differentially Private Quantile Regression: Distributed Estimation and Statistical Inference
- URL: http://arxiv.org/abs/2508.05212v1
- Date: Thu, 07 Aug 2025 09:47:44 GMT
- Title: High-Dimensional Differentially Private Quantile Regression: Distributed Estimation and Statistical Inference
- Authors: Ziliang Shen, Caixing Wang, Shaoli Wang, Yibo Yan,
- Abstract summary: We propose a differentially private quantile regression method for high-dimensional data in a distributed setting.<n>We develop a differentially private estimation algorithm with iterative updates, ensuring near-optimal statistical accuracy and formal privacy guarantees.
- Score: 0.26784722398800515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the development of big data and machine learning, privacy concerns have become increasingly critical, especially when handling heterogeneous datasets containing sensitive personal information. Differential privacy provides a rigorous framework for safeguarding individual privacy while enabling meaningful statistical analysis. In this paper, we propose a differentially private quantile regression method for high-dimensional data in a distributed setting. Quantile regression is a powerful and robust tool for modeling the relationships between the covariates and responses in the presence of outliers or heavy-tailed distributions. To address the computational challenges due to the non-smoothness of the quantile loss function, we introduce a Newton-type transformation that reformulates the quantile regression task into an ordinary least squares problem. Building on this, we develop a differentially private estimation algorithm with iterative updates, ensuring both near-optimal statistical accuracy and formal privacy guarantees. For inference, we further propose a differentially private debiased estimator, which enables valid confidence interval construction and hypothesis testing. Additionally, we propose a communication-efficient and differentially private bootstrap for simultaneous hypothesis testing in high-dimensional quantile regression, suitable for distributed settings with both small and abundant local data. Extensive simulations demonstrate the robustness and effectiveness of our methods in practical scenarios.
Related papers
- On Privately Estimating a Single Parameter [47.499748486548484]
We investigate differentially private estimators for individual parameters within larger parametric models.<n>By leveraging these private certificates, we provide computationally and statistical efficient mechanisms that release private statistics that are, at least in the sample size, essentially unimprovable.<n>We investigate the practicality of the algorithms both in simulated data and in real-world data from the American Community Survey and US Census, highlighting scenarios in which the new procedures are successful and identifying areas for future work.
arXiv Detail & Related papers (2025-03-21T15:57:12Z) - A Conformal Approach to Feature-based Newsvendor under Model Misspecification [2.801095519296785]
We propose a model-free and distribution-free framework inspired by conformal prediction.<n>We validate our framework using both simulated data and a real-world dataset from the Capital Bikeshare program in Washington, D.C.
arXiv Detail & Related papers (2024-12-17T18:34:43Z) - Differentially Private Random Feature Model [52.468511541184895]
We produce a differentially private random feature model for privacy-preserving kernel machines.<n>We show that our method preserves privacy and derive a generalization error bound for the method.
arXiv Detail & Related papers (2024-12-06T05:31:08Z) - Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
We propose PseudoProbability Unlearning (PPU), a novel method that enables models to forget data to adhere to privacy-preserving manner.
Our method achieves over 20% improvements in forgetting error compared to the state-of-the-art.
arXiv Detail & Related papers (2024-11-04T21:27:06Z) - Geometry-Aware Instrumental Variable Regression [56.16884466478886]
We propose a transport-based IV estimator that takes into account the geometry of the data manifold through data-derivative information.
We provide a simple plug-and-play implementation of our method that performs on par with related estimators in standard settings.
arXiv Detail & Related papers (2024-05-19T17:49:33Z) - Differentially Private Federated Learning: Servers Trustworthiness, Estimation, and Statistical Inference [18.97060758177909]
This paper investigates the challenges of high-dimensional estimation and inference under the constraints of differential privacy.
We introduce a novel federated estimation algorithm tailored for linear regression models.
We also propose methods for statistical inference, including coordinate-wise confidence intervals for individual parameters.
arXiv Detail & Related papers (2024-04-25T02:14:07Z) - Simulation-based Bayesian Inference from Privacy Protected Data [0.0]
We propose simulation-based inference methods from privacy-protected datasets.<n>We illustrate our methods on discrete time-series data under an infectious disease model and with ordinary linear regression models.
arXiv Detail & Related papers (2023-10-19T14:34:17Z) - Differentially Private Linear Regression with Linked Data [3.9325957466009203]
Differential privacy, a mathematical notion from computer science, is a rising tool offering robust privacy guarantees.
Recent work focuses on developing differentially private versions of individual statistical and machine learning tasks.
We present two differentially private algorithms for linear regression with linked data.
arXiv Detail & Related papers (2023-08-01T21:00:19Z) - Differential privacy and robust statistics in high dimensions [49.50869296871643]
High-dimensional Propose-Test-Release (HPTR) builds upon three crucial components: the exponential mechanism, robust statistics, and the Propose-Test-Release mechanism.
We show that HPTR nearly achieves the optimal sample complexity under several scenarios studied in the literature.
arXiv Detail & Related papers (2021-11-12T06:36:40Z) - Robust and Differentially Private Mean Estimation [40.323756738056616]
Differential privacy has emerged as a standard requirement in a variety of applications ranging from the U.S. Census to data collected in commercial devices.
An increasing number of such databases consist of data from multiple sources, not all of which can be trusted.
This leaves existing private analyses vulnerable to attacks by an adversary who injects corrupted data.
arXiv Detail & Related papers (2021-02-18T05:02:49Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.