論文の概要: Driver Assistant: Persuading Drivers to Adjust Secondary Tasks Using Large Language Models
- arxiv url: http://arxiv.org/abs/2508.05238v1
- Date: Thu, 07 Aug 2025 10:26:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-08 18:59:39.814948
- Title: Driver Assistant: Persuading Drivers to Adjust Secondary Tasks Using Large Language Models
- Title(参考訳): ドライバアシスタント:大規模言語モデルを用いた二次タスクの調整をドライバーに促す
- Authors: Wei Xiang, Muchen Li, Jie Yan, Manling Zheng, Hanfei Zhu, Mengyun Jiang, Lingyun Sun,
- Abstract要約: 本研究では,道路条件に対する適切な注意維持を支援するために,Large Language Model (LLM) を用いた。
本ツールでは,レベル3システムで発生する道路条件をトリガーとして利用し,視覚経路と聴覚経路の両方を通じてドライバーの行動を積極的に操縦する。
- 参考スコア(独自算出の注目度): 21.606100899122847
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Level 3 automated driving systems allows drivers to engage in secondary tasks while diminishing their perception of risk. In the event of an emergency necessitating driver intervention, the system will alert the driver with a limited window for reaction and imposing a substantial cognitive burden. To address this challenge, this study employs a Large Language Model (LLM) to assist drivers in maintaining an appropriate attention on road conditions through a "humanized" persuasive advice. Our tool leverages the road conditions encountered by Level 3 systems as triggers, proactively steering driver behavior via both visual and auditory routes. Empirical study indicates that our tool is effective in sustaining driver attention with reduced cognitive load and coordinating secondary tasks with takeover behavior. Our work provides insights into the potential of using LLMs to support drivers during multi-task automated driving.
- Abstract(参考訳): レベル3自動運転システムは、ドライバーがリスクに対する認識を減らしながら二次的なタスクをこなせるようにする。
緊急にドライバーの介入が必要な場合、システムはドライバーに反応の窓を限定し、かなりの認知的負担を課すよう警告する。
この課題に対処するために, 大規模言語モデル(LLM)を用いて, 「人間化された」説得的アドバイスを通じて, ドライバーが道路状況への適切な注意を維持するのを支援する。
本ツールでは,レベル3システムで発生する道路条件をトリガーとして利用し,視覚経路と聴覚経路の両方を通じてドライバーの行動を積極的に操縦する。
実証研究は,認知負荷の低減によるドライバーの注意の維持と,テイクオーバ行動による二次タスクの調整に有効であることが示唆された。
我々の研究は、マルチタスク自動運転中にドライバーをサポートするためにLLMを使用する可能性についての洞察を提供する。
関連論文リスト
- Predicting Multitasking in Manual and Automated Driving with Optimal Supervisory Control [2.0794380287086214]
本稿では、運転中に人間のマルチタスクをシミュレートする計算認知モデルを提案する。
最適監督制御理論に基づいて、マルチタスクが運転要求、対話的タスク、自動化レベルの変化にどのように適応するかを予測する。
論文 参考訳(メタデータ) (2025-03-23T08:56:53Z) - Efficient Mixture-of-Expert for Video-based Driver State and Physiological Multi-task Estimation in Conditional Autonomous Driving [12.765198683804094]
道路の安全は世界中で重要な課題であり、交通事故による死者は約135万人である。
VDMoEと呼ばれる新しいマルチタスクDMSを提案し、RGBビデオ入力を利用して運転状態を非侵襲的に監視する。
論文 参考訳(メタデータ) (2024-10-28T14:49:18Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
本稿では,現在のAVの状況を調べることによって,自律運転における本質的なリスクを評価する。
AVの利点と、現実のシナリオにおける潜在的なセキュリティ課題との微妙なバランスを強調した、特定のクレームを開発する。
論文 参考訳(メタデータ) (2024-05-14T09:42:21Z) - RACER: Epistemic Risk-Sensitive RL Enables Fast Driving with Fewer Crashes [57.319845580050924]
本稿では,リスク感応制御と適応行動空間のカリキュラムを組み合わせた強化学習フレームワークを提案する。
提案アルゴリズムは,現実世界のオフロード運転タスクに対して,高速なポリシーを学習可能であることを示す。
論文 参考訳(メタデータ) (2024-05-07T23:32:36Z) - Assessing Drivers' Situation Awareness in Semi-Autonomous Vehicles: ASP
based Characterisations of Driving Dynamics for Modelling Scene
Interpretation and Projection [0.0]
我々は,運転者が状況に気付いているかを判断し,人間中心の支援を提供するための枠組みを提案する。
このフレームワークはロボット・オペレーティング・システム(ROS)内のモジュールシステムとして開発され、環境と運転者の状態を検知するモジュールを備えている。
本稿では、運転者の解釈とシーンの投影をモデル化し、推論するAnswer Set Programming(ASP)に基づくアプローチに焦点を当てる。
論文 参考訳(メタデータ) (2023-08-30T09:07:49Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [50.936478241688114]
非客観的運転経験のモデル化は困難であり,既存手法では運転経験蓄積手順を模擬する機構が欠如している。
本稿では,運転経験蓄積手順をモデル化するFeedBack Loop Network (FBLNet)を提案する。
提案モデルでは,既存の手法に対して強い優位性を示し,2つのドライバー注意ベンチマークデータセットの性能向上を実現している。
論文 参考訳(メタデータ) (2022-12-05T08:25:09Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
本稿では,コミュニケーション・センシングにおける制御戦略と現実的限界のギャップを埋める上で,模倣学習が果たす役割について考察する。
擬似学習は、車両の5%に採用されれば、局地的な観測のみを用いて、交通条件の異なるネットワークのエネルギー効率を15%向上させる政策を導出できることを示す。
論文 参考訳(メタデータ) (2022-06-28T17:08:31Z) - Drivers' attention detection: a systematic literature review [62.997667081978825]
多くの要因が運転中の注意散らしに寄与しうるが、それは物体や事象が生理的状態、つまり眠気や疲労に結びつくためであり、運転者が注意をそらすことができないからである。
技術進歩により、現実の状況における注意を検知する多くのソリューションの開発と応用が可能となった。
本研究は,車輪の運転者の注意を検知するための方法と基準について,システマティック文献レビュー(Systematic Literature Review)を提示する。
論文 参考訳(メタデータ) (2022-04-06T11:36:40Z) - An active approach towards monitoring and enhancing drivers'
capabilities -- the ADAM cogtec solution [1.0312968200748118]
特定の瞬間における運転者の認知能力は、運転者の安全性を評価する上で最も明白な変数である。
視覚刺激に対するドライバーの眼反応が記録された閉ループ法を開発した。
機械学習アルゴリズムは、警戒状態の眼反応に基づいて訓練され、疲労や物質乱用による能力低下を検出することができた。
論文 参考訳(メタデータ) (2022-04-05T07:46:07Z) - Driver Drowsiness Classification Based on Eye Blink and Head Movement
Features Using the k-NN Algorithm [8.356765961526955]
この研究は、ドライバー監視カメラの信号を用いて、車両内の運転者の眠気検知を拡張することを目的としている。
この目的のために、運転シミュレータ実験において、運転者の点眼行動と頭部運動に関連する35の特徴を抽出する。
最高の特徴セットの分析は、運転者の瞬き行動と頭部の動きに対する眠気の影響についての貴重な洞察を与える。
論文 参考訳(メタデータ) (2020-09-28T12:37:38Z) - Driver Intention Anticipation Based on In-Cabin and Driving Scene
Monitoring [52.557003792696484]
本稿では,車内映像と交通シーン映像の両方に基づいて運転者の意図を検出する枠組みを提案する。
本フレームワークは,83.98%,F1スコア84.3%の精度で予測を行う。
論文 参考訳(メタデータ) (2020-06-20T11:56:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。