論文の概要: Echo State Networks for Bitcoin Time Series Prediction
- arxiv url: http://arxiv.org/abs/2508.05416v1
- Date: Thu, 07 Aug 2025 14:08:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-08 18:59:39.895954
- Title: Echo State Networks for Bitcoin Time Series Prediction
- Title(参考訳): Bitcoinの時系列予測のためのEcho State Networks
- Authors: Mansi Sharma, Enrico Sartor, Marc Cavazza, Helmut Prendinger,
- Abstract要約: 本研究では,Echo State Networks (ESNs) が短時間の株式市場の動きを効果的にモデル化し,動的データの非線形パターンを捉えることができることを示す。
また,カオス期におけるLyapunov指数によるカオス解析を行い,既存の機械学習手法よりも有意差があることを実証した。
- 参考スコア(独自算出の注目度): 4.938209986258856
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Forecasting stock and cryptocurrency prices is challenging due to high volatility and non-stationarity, influenced by factors like economic changes and market sentiment. Previous research shows that Echo State Networks (ESNs) can effectively model short-term stock market movements, capturing nonlinear patterns in dynamic data. To the best of our knowledge, this work is among the first to explore ESNs for cryptocurrency forecasting, especially during extreme volatility. We also conduct chaos analysis through the Lyapunov exponent in chaotic periods and show that our approach outperforms existing machine learning methods by a significant margin. Our findings are consistent with the Lyapunov exponent analysis, showing that ESNs are robust during chaotic periods and excel under high chaos compared to Boosting and Na\"ive methods.
- Abstract(参考訳): 株価と仮想通貨の価格の予測は、高いボラティリティと非定常性のために困難であり、経済の変化や市場のセンチメントなどの要因の影響を受けている。
これまでの研究では、Echo State Networks (ESNs) が短期株式市場の動きを効果的にモデル化し、動的データの非線形パターンをキャプチャできることが示されている。
私たちの知る限りでは、この研究は暗号通貨の予測のためのESNを、特に極度のボラティリティの間、初めて探求した研究のひとつです。
また,カオス期におけるLyapunov指数によるカオス解析を行い,既存の機械学習手法よりも有意差があることを実証した。
Lyapunov exponent analysisと一致し, ESNはカオス期において頑健であり, Boosting法やNa\"ive法と比較して高いカオス下では優れていた。
関連論文リスト
- Ethereum Price Prediction Employing Large Language Models for Short-term and Few-shot Forecasting [13.40649684167945]
本稿では,Large Language Models (LLMs) の短期的・少数的な予測シナリオの価格予測における有効性について述べる。
既存の学習済みLCMを数十億のトークンからの自然言語や画像に適応させ、価格時系列データのユニークな特性を活用することによって、この問題に対処する。
このアプローチは、Mean Squared Error(MSE)、Mean Absolute Error(MAE)、Root Mean Squared Error(RMSE)など、複数のメトリクスにわたるベンチマークを一貫して上回る。
論文 参考訳(メタデータ) (2025-03-29T19:04:28Z) - FinBERT-BiLSTM: A Deep Learning Model for Predicting Volatile Cryptocurrency Market Prices Using Market Sentiment Dynamics [3.6423651166048874]
本稿では,双方向長短期メモリ(Bidirectional Long Short-Term Memory, Bi-LSTM)ネットワークとFinBERTを併用して,暗号通貨の予測精度を向上させるハイブリッドモデルを提案する。
このアプローチは、先進的な時系列モデルと感情分析を組み合わせることで、不安定な金融市場の予測において重要なギャップを埋める。
論文 参考訳(メタデータ) (2024-11-02T14:43:06Z) - An Evaluation of Deep Learning Models for Stock Market Trend Prediction [0.3277163122167433]
本研究では,S&P 500指数とブラジルETF EWZの日時閉値を用いた短期トレンド予測のための先進的なディープラーニングモデルの有効性について検討した。
時系列予測に最適化されたxLSTM適応であるxLSTM-TSモデルを導入する。
テストされたモデルの中で、xLSTM-TSは一貫して他のモデルよりも優れており、例えば、テスト精度72.82%、F1スコア73.16%をEWZの日次データセットで達成している。
論文 参考訳(メタデータ) (2024-08-22T13:58:55Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
本稿では,これらの投資商品を活用するために,ニューラルネットワークに基づく効果的なアルゴリズムを提案する。
シャープ比を最大化するために、各アセットの割り当て重量を時間間隔で出力するディープニューラルネットワークを訓練する。
ネットワークの特定の資産に対するバイアスを規制する新たな損失項を提案し,最小分散戦略に近い割り当て戦略をネットワークに学習させる。
論文 参考訳(メタデータ) (2023-10-02T12:33:28Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Learning to Predict Short-Term Volatility with Order Flow Image Representation [0.0]
本論文は、注文フロー情報を用いてBitcoin価格の短期的な変動を予測するという課題に対処する。
本稿では,一定時間間隔(スナップショット)で順序フローデータを画像に変換する手法を提案する。
次にイメージを使用して、単純な3層畳み込みニューラルネットワーク(CNN)と、より高度なResNet-18とConvMixerの両方をトレーニングする。
論文 参考訳(メタデータ) (2023-04-04T12:32:25Z) - Design interpretable experience of dynamical feed forward machine
learning model for forecasting NASDAQ [0.0]
株式市場のボラティリティや原油、金、ドルなどの経済指標の影響、NASDAQ株も影響を受けている。
我々は、石油、ドル、金、および経済市場における株式市場のボラティリティの影響について検討した。
我々はPCAと線形回帰アルゴリズムを用いて、これらのストックをモデル化するための最適な動的学習体験を設計した。
論文 参考訳(メタデータ) (2022-12-22T21:27:40Z) - Incorporating Interactive Facts for Stock Selection via Neural Recursive
ODEs [30.629948593098273]
ガウス事前を持つ潜在変数モデルであるStockODEを提案する。
我々は、ストックボラティリティの時間的進化を捉えるために、ニューラル再帰正規微分方程式ネットワーク(NRODE)を設計する。
2つの実世界の株式市場データセットで実施された実験は、StockODEがいくつかのベースラインを大きく上回っていることを示している。
論文 参考訳(メタデータ) (2022-10-28T06:14:02Z) - Forecasting Bitcoin volatility spikes from whale transactions and
CryptoQuant data using Synthesizer Transformer models [5.88864611435337]
ボラティリティ予測のためのディープラーニング合成器変換器モデルを提案する。
以上の結果から,既存の最先端モデルよりも優れたモデルであることが示唆された。
提案手法はビットコイン市場における極端なボラティリティ(変動性)の動きを予測するための有用なツールであることを示す。
論文 参考訳(メタデータ) (2022-10-06T05:44:29Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Temporal-Relational Hypergraph Tri-Attention Networks for Stock Trend
Prediction [45.74513775015998]
本稿では、エンドツーエンドの株価トレンド予測のための協調的時間関係モデリングフレームワークを提案する。
新しいハイパーグラフトリアテンションネットワーク(HGTAN)が提案され,ハイパーグラフ畳み込みネットワークが拡張された。
このようにして、HGTANは、在庫間の情報伝達におけるノード、ハイパーエッジ、ハイパーグラフの重要性を適応的に決定する。
論文 参考訳(メタデータ) (2021-07-22T02:16:09Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
ディープラーニングモデルは、金融時系列データの予測問題など、さまざまな領域から来る多くの問題において、大幅なパフォーマンス改善をもたらしている。
近年,制限順序書の時系列予測の効率的かつ高性能なモデルとして,時間的注意強化バイリニアネットワークが提案されている。
本稿では,モデルの低ランクテンソル近似を提案し,トレーニング可能なパラメータの数をさらに削減し,その速度を向上する。
論文 参考訳(メタデータ) (2021-07-05T10:15:23Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
金融ニュースとツイートから抽出された感情とFTSE100の動きの関係を調べました。
ニュース見出しから得られた感情は、市場のリターンを予測するシグナルとして使われる可能性があるが、ボラティリティには当てはまらない。
我々は,新たな情報の到着に応じて,市場の変動を予測するための正確な分類器を開発した。
論文 参考訳(メタデータ) (2020-12-10T01:15:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。