論文の概要: Ensemble-Based Graph Representation of fMRI Data for Cognitive Brain State Classification
- arxiv url: http://arxiv.org/abs/2508.06118v1
- Date: Fri, 08 Aug 2025 08:32:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-11 20:39:06.142132
- Title: Ensemble-Based Graph Representation of fMRI Data for Cognitive Brain State Classification
- Title(参考訳): 認識脳状態分類のためのアンサンブルに基づくfMRIデータのグラフ表現
- Authors: Daniil Vlasenko, Vadim Ushakov, Alexey Zaikin, Denis Zakharov,
- Abstract要約: 両脳状態分類タスクのためのアンサンブルに基づくグラフ表現法を提案する。
提案手法は,複数のベース機械学習モデルを活用することでグラフを構築する。
提案手法は,fMRIグラフ表現のエッジレベルの解釈可能性を維持し,マルチクラスおよび回帰タスクに適用可能であり,他の画像モダリティにも拡張可能である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding and classifying human cognitive brain states based on neuroimaging data remains one of the foremost and most challenging problems in neuroscience, owing to the high dimensionality and intrinsic noise of the signals. In this work, we propose an ensemble-based graph representation method of functional magnetic resonance imaging (fMRI) data for the task of binary brain-state classification. Our method builds the graph by leveraging multiple base machine-learning models: each edge weight reflects the difference in posterior probabilities between two cognitive states, yielding values in the range [-1, 1] that encode confidence in a given state. We applied this approach to seven cognitive tasks from the Human Connectome Project (HCP 1200 Subject Release), including working memory, gambling, motor activity, language, social cognition, relational processing, and emotion processing. Using only the mean incident edge weights of the graphs as features, a simple logistic-regression classifier achieved average accuracies from 97.07% to 99.74%. We also compared our ensemble graphs with classical correlation-based graphs in a classification task with a graph neural network (GNN). In all experiments, the highest classification accuracy was obtained with ensemble graphs. These results demonstrate that ensemble graphs convey richer topological information and enhance brain-state discrimination. Our approach preserves edge-level interpretability of the fMRI graph representation, is adaptable to multiclass and regression tasks, and can be extended to other neuroimaging modalities and pathological-state classification.
- Abstract(参考訳): 神経画像データに基づく人間の認知脳状態の理解と分類は、信号の高次元性と本質的なノイズのため、神経科学において最も困難であり、最も難しい問題の一つである。
本研究では,2値脳状態分類のための機能的磁気共鳴画像(fMRI)データのアンサンブルに基づくグラフ表現法を提案する。
それぞれのエッジウェイトは、2つの認知状態間の後部確率の差を反映し、与えられた状態における信頼度を符号化する範囲[-1, 1]の値を生成する。
本研究では,作業記憶,ギャンブル,運動活動,言語,社会的認知,リレーショナル処理,感情処理を含む,ヒューマンコネクトームプロジェクト(HCP 1200 Subject Release)の7つの認知タスクに適用した。
グラフの平均入射エッジ重量だけを特徴として、単純なロジスティック回帰分類器は97.07%から99.74%の精度を達成した。
また,分類タスクにおいて,アンサンブルグラフと古典的相関に基づくグラフをグラフニューラルネットワーク(GNN)と比較した。
すべての実験において、最も高い分類精度がアンサンブルグラフを用いて得られた。
これらの結果は、アンサンブルグラフがより豊かなトポロジ情報を伝達し、脳状態の識別を高めることを示している。
提案手法は,fMRIグラフ表現のエッジレベルの解釈可能性を維持し,マルチクラスおよび回帰タスクに適用可能であり,他の神経画像モダリティや病理状態の分類にも適用可能である。
関連論文リスト
- Topology-Aware Graph Augmentation for Predicting Clinical Trajectories in Neurocognitive Disorders [27.280927277680515]
本稿では、一般化可能なエンコーダをトレーニングするためのプレテキストモデルと、下流タスクを実行するためのタスク固有モデルからなるトポロジ対応グラフ拡張(TGA)フレームワークを提案する。
1,688 fMRIでの実験では、TGAがいくつかの最先端の手法より優れていることが示唆された。
論文 参考訳(メタデータ) (2024-10-31T19:37:20Z) - Balanced Graph Structure Information for Brain Disease Detection [6.799894169098717]
グラフ畳み込みネットワーク(GCN)を用いたフィルタ相関行列と最適サンプルグラフの2つのグラフ構造をモデル化したBargrainを提案する。
我々の広範な実験に基づいて、Bargrainは、平均的なF1スコアによって測定された脳疾患データセットの分類タスクにおいて、最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2023-12-30T06:50:52Z) - HDGL: A hierarchical dynamic graph representation learning model for
brain disorder classification [1.7495515703051119]
上記の課題に対処するために設計された最初のモデルである階層型動的グラフ表現学習(HDGL)モデルを提案する。
ABIDEおよびADHD-200データセットを用いて提案モデルの性能を評価する。
論文 参考訳(メタデータ) (2023-11-06T06:29:23Z) - A Comparative Study of Population-Graph Construction Methods and Graph
Neural Networks for Brain Age Regression [48.97251676778599]
医用画像では、人口グラフが有望な結果を示しており、主に分類作業に向けられている。
人口グラフの抽出は非自明な作業であり、グラフニューラルネットワーク(GNN)の性能に大きな影響を及ぼす可能性がある
本研究では,有意義なグラフ構築の重要性を強調し,異なる集団グラフ構築手法による実験を行う。
論文 参考訳(メタデータ) (2023-09-26T10:30:45Z) - Multimodal brain age estimation using interpretable adaptive
population-graph learning [58.99653132076496]
下流タスクに最適化された人口グラフ構造を学習するフレームワークを提案する。
注意機構は、画像と非画像の特徴のセットに重みを割り当てる。
グラフ構築において最も重要な注意重みを可視化することにより、グラフの解釈可能性を高める。
論文 参考訳(メタデータ) (2023-07-10T15:35:31Z) - NeuroGraph: Benchmarks for Graph Machine Learning in Brain Connectomics [9.803179588247252]
グラフベースのニューロイメージングデータセットのコレクションであるNeuroGraphを紹介する。
行動的特徴と認知的特徴の複数のカテゴリを予測するための実用性を実証する。
論文 参考訳(メタデータ) (2023-06-09T19:10:16Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
グラフは機能的磁気画像(fMRI)データから得られる脳活動の自然な表現である。
機能的接続ネットワーク(FCN)として知られる解剖学的脳領域のクラスターは、脳の機能や機能不全を理解するのに有用なバイオマーカーとなる時間的関係を符号化することが知られている。
しかし、以前の研究は脳の時間的ダイナミクスを無視し、静的グラフに焦点を当てていた。
本稿では,脳の領域を時間的に進化するコミュニティにクラスタリングし,非教師なしノードの動的埋め込みを学習する動的脳グラフ深部生成モデル(DBGDGM)を提案する。
論文 参考訳(メタデータ) (2023-01-26T20:45:30Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
下流予測タスクによって誘導されるfMRIデータの最適時間変化依存性構造を学習する新しい手法であるDynDepNetを提案する。
実世界のfMRIデータセットの実験は、性別分類のタスクにおいて、DynDepNetが最先端の結果を達成することを実証している。
論文 参考訳(メタデータ) (2022-09-27T16:32:11Z) - Brain Multigraph Prediction using Topology-Aware Adversarial Graph
Neural Network [1.6114012813668934]
topoGANアーキテクチャを導入し、単一の脳グラフから複数の脳グラフを共同で予測する。
i) 1つのグラフから複数の脳グラフを予測する新しいグラフ対向オートエンコーダを設計すること、(ii)GANのモード崩壊問題に対処するために符号化されたソースグラフをクラスタリングすること、(iii)トポロジ的損失を導入して、トポロジ的ターゲット脳グラフの予測を強要することである。
論文 参考訳(メタデータ) (2021-05-06T10:20:45Z) - Understanding Graph Isomorphism Network for rs-fMRI Functional
Connectivity Analysis [49.05541693243502]
グラフ同型ネットワーク(GIN)を用いてfMRIデータを解析するフレームワークを開発する。
本稿では,GINがグラフ空間における畳み込みニューラルネットワーク(CNN)の二重表現であることを示す。
我々は,提案したGINをワンホット符号化で調整するGNNに対して,CNNベースのサリエンシマップ技術を利用する。
論文 参考訳(メタデータ) (2020-01-10T23:40:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。