論文の概要: Symbolic Learning of Interpretable Reduced-Order Models for Jumping Quadruped Robots
- arxiv url: http://arxiv.org/abs/2508.06538v1
- Date: Mon, 04 Aug 2025 12:33:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-12 21:23:28.420457
- Title: Symbolic Learning of Interpretable Reduced-Order Models for Jumping Quadruped Robots
- Title(参考訳): 跳躍四足歩行ロボットの解釈型減階モデルの記号学習
- Authors: Gioele Buriani, Jingyue Liu, Maximilian Stölzle, Cosimo Della Santina, Jiatao Ding,
- Abstract要約: 本稿では,特にジャンプのための解釈可能な動的モデルを導出するための新しい手法を提案する。
我々は,SINDy(Sparse Identification of Dynamics)とジャンプダイナミクスの物理構造的先行性を組み合わせた学習アーキテクチャを提案することにより,低次元潜在空間における高次元非線形ジャンプダイナミクスを捉える。
- 参考スコア(独自算出の注目度): 2.7999421589911164
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reduced-order models are essential for motion planning and control of quadruped robots, as they simplify complex dynamics while preserving critical behaviors. This paper introduces a novel methodology for deriving such interpretable dynamic models, specifically for jumping. We capture the high-dimensional, nonlinear jumping dynamics in a low-dimensional latent space by proposing a learning architecture combining Sparse Identification of Nonlinear Dynamics (SINDy) with physical structural priors on the jump dynamics. Our approach demonstrates superior accuracy to the traditional actuated Spring-loaded Inverted Pendulum (aSLIP) model and is validated through simulation and hardware experiments across different jumping strategies.
- Abstract(参考訳): 減階モデルは、重要な動作を保ちながら複雑なダイナミクスを単純化するため、四足歩行ロボットの運動計画と制御に不可欠である。
本稿では,このような解釈可能な動的モデル,特にジャンプのための新しい手法を提案する。
非線形ダイナミクスのスパース同定(SINDy)とジャンプダイナミクスの物理構造的先行性を組み合わせた学習アーキテクチャを提案することにより,低次元潜在空間における高次元非線形ジャンプダイナミクスを捉える。
提案手法は,従来の動作式Spring-loaded Inverted Pendulum(aSLIP)モデルよりも優れた精度を示し,ジャンプ戦略のシミュレーションやハードウェア実験を通じて検証する。
関連論文リスト
- Physics-Grounded Motion Forecasting via Equation Discovery for Trajectory-Guided Image-to-Video Generation [54.42523027597904]
物理グラウンド映像予測のためのシンボル回帰と軌跡誘導映像(I2V)モデルを統合する新しいフレームワークを提案する。
提案手法は,入力ビデオから運動軌跡を抽出し,検索に基づく事前学習機構を用いて記号回帰を向上し,運動方程式を発見し,物理的に正確な将来の軌跡を予測する。
論文 参考訳(メタデータ) (2025-07-09T13:28:42Z) - Spatial-Temporal Graph Diffusion Policy with Kinematic Modeling for Bimanual Robotic Manipulation [88.83749146867665]
既存のアプローチは、遠く離れた次のベストなエンドエフェクタのポーズを予測するポリシーを学びます。
すると、運動に対する対応する関節回転角を逆運動学を用いて計算する。
本稿では,Kinematics 拡張空間テンポアル gRaph diffuser を提案する。
論文 参考訳(メタデータ) (2025-03-13T17:48:35Z) - Learning Low-Dimensional Strain Models of Soft Robots by Looking at the Evolution of Their Shape with Application to Model-Based Control [2.058941610795796]
本稿では,低次元物理モデル学習のための合理化手法を提案する。
各種平面ソフトマニピュレータを用いたシミュレーションにより,本手法の有効性を検証した。
物理的に互換性のあるモデルを生成する方法のおかげで、学習したモデルはモデルベースの制御ポリシーと簡単に組み合わせることができる。
論文 参考訳(メタデータ) (2024-10-31T18:37:22Z) - Mamba-FSCIL: Dynamic Adaptation with Selective State Space Model for Few-Shot Class-Incremental Learning [115.79349923044663]
FSCIL(Few-shot class-incremental Learning)は、限られた例から新しいクラスを段階的に学習することを目的としている。
静的アーキテクチャは固定パラメータ空間に依存して、逐次到着するデータから学習し、現在のセッションに過度に適合する傾向がある。
本研究では,FSCILにおける選択状態空間モデル(SSM)の可能性について検討する。
論文 参考訳(メタデータ) (2024-07-08T17:09:39Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - End-to-End Learning of Hybrid Inverse Dynamics Models for Precise and
Compliant Impedance Control [16.88250694156719]
剛体力学モデルの物理的に一貫した慣性パラメータを同定できる新しいハイブリッドモデルの定式化を提案する。
7自由度マニピュレータ上での最先端の逆動力学モデルに対する我々のアプローチを比較した。
論文 参考訳(メタデータ) (2022-05-27T07:39:28Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - GEM: Group Enhanced Model for Learning Dynamical Control Systems [78.56159072162103]
サンプルベースの学習が可能な効果的なダイナミクスモデルを構築します。
リー代数ベクトル空間上のダイナミクスの学習は、直接状態遷移モデルを学ぶよりも効果的であることを示す。
この研究は、ダイナミクスの学習とリー群の性質の関連性を明らかにし、新たな研究の方向への扉を開く。
論文 参考訳(メタデータ) (2021-04-07T01:08:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。