論文の概要: Generative Artificial Intelligence Extracts Structure-Function Relationships from Plants for New Materials
- arxiv url: http://arxiv.org/abs/2508.06591v1
- Date: Fri, 08 Aug 2025 10:41:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-12 21:23:28.460926
- Title: Generative Artificial Intelligence Extracts Structure-Function Relationships from Plants for New Materials
- Title(参考訳): 創発的人工知能による構造・機能関係の抽出と新材料への応用
- Authors: Rachel K. Luu, Jingyu Deng, Mohammed Shahrudin Ibrahim, Nam-Joon Cho, Ming Dao, Subra Suresh, Markus J. Buehler,
- Abstract要約: 大規模言語モデル(LLM)は、知識検索と創造的思考に対する新しいアプローチを可能にすることによって、研究の景観を再構築した。
本稿では, 植物科学, バイオミメティクス, 材料工学などの非連結分野の文献と, 生成AIを統合した第一種フレームワークを提案する。
花粉系材料やRhapis Exelsaの葉などの湿度応答性システムに着目し, 自覚的, 適応的性能を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large language models (LLMs) have reshaped the research landscape by enabling new approaches to knowledge retrieval and creative ideation. Yet their application in discipline-specific experimental science, particularly in highly multi-disciplinary domains like materials science, remains limited. We present a first-of-its-kind framework that integrates generative AI with literature from hitherto-unconnected fields such as plant science, biomimetics, and materials engineering to extract insights and design experiments for materials. We focus on humidity-responsive systems such as pollen-based materials and Rhapis excelsa (broadleaf lady palm) leaves, which exhibit self-actuation and adaptive performance. Using a suite of AI tools, including a fine-tuned model (BioinspiredLLM), Retrieval-Augmented Generation (RAG), agentic systems, and a Hierarchical Sampling strategy, we extract structure-property relationships and translate them into new classes of bioinspired materials. Structured inference protocols generate and evaluate hundreds of hypotheses from a single query, surfacing novel and experimentally tractable ideas. We validate our approach through real-world implementation: LLM-generated procedures, materials designs, and mechanical predictions were tested in the laboratory, culminating in the fabrication of a novel pollen-based adhesive with tunable morphology and measured shear strength, establishing a foundation for future plant-derived adhesive design. This work demonstrates how AI-assisted ideation can drive real-world materials design and enable effective human-AI collaboration.
- Abstract(参考訳): 大規模言語モデル(LLM)は、知識検索と創造的思考に対する新しいアプローチを可能にすることによって、研究の景観を再構築した。
しかし、専門分野に特化した実験科学、特に材料科学のような多分野の領域への応用は依然として限られている。
本稿では, 植物科学, バイオミメティクス, 材料工学などの非連結分野の文献と生成AIを統合し, 材料に対する洞察と設計実験を抽出する一級フレームワークを提案する。
花粉系材料やラッピス・エクセルサ(ブロードリーフ・レディ・パーム)葉などの湿度応答性システムに着目し,自覚的,適応的な性能を示した。
微調整モデル(BioinspiredLLM)、検索・拡張生成(RAG)、エージェントシステム、階層型サンプリング戦略などを含むAIツール群を用いて、構造的不適切な関係を抽出し、それらをバイオインスパイアされた素材の新しいクラスに変換する。
構造化推論プロトコルは、1つのクエリから数百の仮説を生成し、評価する。
LLM法, 材料設計, 機械的予測を実験室で実施し, 改良性を有する新規な花粉系接着剤の作製とせん断強度の測定を行い, 将来の植物由来接着剤設計の基礎を築いた。
この研究は、AI支援のアイデアが現実世界の素材デザインを駆動し、効果的な人間とAIのコラボレーションを可能にする方法を示す。
関連論文リスト
- Operationalizing Serendipity: Multi-Agent AI Workflows for Enhanced Materials Characterization with Theory-in-the-Loop [0.0]
SciLinkは、材料研究におけるセレンディピティーを運用するために設計された、オープンソースのマルチエージェント人工知能フレームワークである。
実験観察、新規性評価、理論シミュレーションの直接的な自動リンクを生成する。
本稿では,原子分解能およびハイパースペクトルデータへの応用,リアルタイムな人間専門家指導の統合能力,研究ループを閉じる能力について述べる。
論文 参考訳(メタデータ) (2025-08-07T04:59:17Z) - Artificial Intelligence and Generative Models for Materials Discovery -- A Review [0.0]
Reviewは、材料発見に適用可能なAI駆動生成モデルのさまざまな原則について議論することを目的としている。
また, 新規触媒, 半導体, 高分子, 結晶の設計における生成モデルの具体的な応用についても紹介する。
論文 参考訳(メタデータ) (2025-08-05T09:56:27Z) - An Empirical Study of Validating Synthetic Data for Text-Based Person Retrieval [51.10419281315848]
我々は,テキストベース人検索(TBPR)研究における合成データの可能性を探るため,実証的研究を行った。
本稿では,自動プロンプト構築戦略を導入するクラス間画像生成パイプラインを提案する。
我々は、画像のさらなる編集に生成AIモデルを応用した、クラス内画像拡張パイプラインを開発する。
論文 参考訳(メタデータ) (2025-03-28T06:18:15Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
大きな言語モデル(LLM)エージェントは、目標駆動の振る舞いと動的適応能力を持ち、人工知能への重要な経路を示す可能性がある。
本調査は, LLMエージェントシステムを方法論中心の分類法により体系的に分解する。
私たちの作業は、エージェントの構築方法、コラボレーション方法、時間の経過とともにどのように進化するか、という、統一されたアーキテクチャの視点を提供します。
論文 参考訳(メタデータ) (2025-03-27T12:50:17Z) - Towards Fully-Automated Materials Discovery via Large-Scale Synthesis Dataset and Expert-Level LLM-as-a-Judge [6.500470477634259]
本研究は,実践的でデータ駆動型資源を提供することで,材料科学コミュニティを支援することを目的としている。
オープンアクセス文献から17Kのエキスパートが検証した合成レシピの包括的データセットを収集した。
AlchemicalBenchは、合成予測に適用された大規模言語モデルの研究をサポートするエンドツーエンドフレームワークを提供する。
論文 参考訳(メタデータ) (2025-02-23T06:16:23Z) - Many Heads Are Better Than One: Improved Scientific Idea Generation by A LLM-Based Multi-Agent System [62.832818186789545]
Virtual Scientists (VirSci) は、科学研究に固有のチームワークを模倣するために設計されたマルチエージェントシステムである。
VirSciは研究のアイデアを共同で生成し、評価し、洗練するエージェントのチームを組織している。
このマルチエージェントアプローチは、新しい科学的アイデアを生み出す上で、最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-12T07:16:22Z) - Leveraging Chemistry Foundation Models to Facilitate Structure Focused Retrieval Augmented Generation in Multi-Agent Workflows for Catalyst and Materials Design [0.0]
ケミカル基礎モデルは,構造に着目したセマンティックケミカル情報検索の基盤として機能することを示す。
また,OpenCLIP などのマルチモーダルモデルと化学基礎モデルの併用について述べる。
論文 参考訳(メタデータ) (2024-08-21T17:25:45Z) - ChemMiner: A Large Language Model Agent System for Chemical Literature Data Mining [56.15126714863963]
ChemMinerは、文学から化学データを抽出するエンドツーエンドのフレームワークである。
ChemMinerには、コア参照マッピングのためのテキスト分析エージェント、非テキスト情報抽出のためのマルチモーダルエージェント、データ生成のための合成分析エージェントの3つの特殊エージェントが組み込まれている。
実験の結果,ヒト化学者に匹敵する反応同定率を示すとともに,高い精度,リコール,F1スコアで処理時間を著しく短縮した。
論文 参考訳(メタデータ) (2024-02-20T13:21:46Z) - AIMS-EREA -- A framework for AI-accelerated Innovation of Materials for
Sustainability -- for Environmental Remediation and Energy Applications [0.0]
AIMS-EREAは、マテリアルサイエンス理論のベストをジェネレーティブAIのパワーと組み合わせる新しいフレームワークです。
これはまた、有害な残留物や反応の副産物の生成の可能性を排除するのに役立つ。
論文 参考訳(メタデータ) (2023-11-18T12:35:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。