論文の概要: BrainATCL: Adaptive Temporal Brain Connectivity Learning for Functional Link Prediction and Age Estimation
- arxiv url: http://arxiv.org/abs/2508.07106v1
- Date: Sat, 09 Aug 2025 21:18:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-12 21:23:28.703403
- Title: BrainATCL: Adaptive Temporal Brain Connectivity Learning for Functional Link Prediction and Age Estimation
- Title(参考訳): BrainATCL: 機能的リンク予測と年齢推定のための適応的時間的脳結合学習
- Authors: Yiran Huang, Amirhossein Nouranizadeh, Christine Ahrends, Mengjia Xu,
- Abstract要約: 本稿では、適応的時間的脳接続学習のための非教師なしノンパラメトリックフレームワークBrainATCLを提案する。
提案手法は,新たに追加されたエッジのレートに基づいて,スナップショット毎のルックバックウィンドウを動的に調整する。
グラフシーケンスはGINE-Mamba2バックボーンを用いて符号化され、静止状態fMRIデータにおける動的機能接続の時空間表現を学習する。
- 参考スコア(独自算出の注目度): 0.33748750222488655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Functional Magnetic Resonance Imaging (fMRI) is an imaging technique widely used to study human brain activity. fMRI signals in areas across the brain transiently synchronise and desynchronise their activity in a highly structured manner, even when an individual is at rest. These functional connectivity dynamics may be related to behaviour and neuropsychiatric disease. To model these dynamics, temporal brain connectivity representations are essential, as they reflect evolving interactions between brain regions and provide insight into transient neural states and network reconfigurations. However, conventional graph neural networks (GNNs) often struggle to capture long-range temporal dependencies in dynamic fMRI data. To address this challenge, we propose BrainATCL, an unsupervised, nonparametric framework for adaptive temporal brain connectivity learning, enabling functional link prediction and age estimation. Our method dynamically adjusts the lookback window for each snapshot based on the rate of newly added edges. Graph sequences are subsequently encoded using a GINE-Mamba2 backbone to learn spatial-temporal representations of dynamic functional connectivity in resting-state fMRI data of 1,000 participants from the Human Connectome Project. To further improve spatial modeling, we incorporate brain structure and function-informed edge attributes, i.e., the left/right hemispheric identity and subnetwork membership of brain regions, enabling the model to capture biologically meaningful topological patterns. We evaluate our BrainATCL on two tasks: functional link prediction and age estimation. The experimental results demonstrate superior performance and strong generalization, including in cross-session prediction scenarios.
- Abstract(参考訳): 機能的磁気共鳴イメージング(Feature Magnetic Resonance Imaging、fMRI)は、ヒトの脳活動を研究するために広く用いられているイメージング技術である。
fMRI信号は、個人が休んでいる場合でも、脳の至る所で過渡的に同期し、高度に構造化された方法で活動をデシンクロする。
これらの機能的接続のダイナミクスは、行動や神経精神疾患と関連している可能性がある。
これらのダイナミクスをモデル化するためには、脳領域間の進化する相互作用を反映し、過渡的な神経状態とネットワーク再構成に関する洞察を与えるため、時間的脳接続表現が不可欠である。
しかし、従来のグラフニューラルネットワーク(GNN)は、動的fMRIデータの長距離時間依存性を捉えるのにしばしば苦労する。
この課題に対処するため、我々は、適応的時間的脳接続学習のための教師なしノンパラメトリックフレームワークBrainATCLを提案し、機能的リンク予測と年齢推定を可能にした。
提案手法は,新たに追加されたエッジのレートに基づいて,スナップショット毎のルックバックウィンドウを動的に調整する。
グラフシーケンスはその後、GINE-Mamba2バックボーンを用いて符号化され、Human Connectome Projectから1000人の参加者からなる静止状態fMRIデータにおける動的機能接続の時空間表現を学習する。
空間モデルをさらに改善するために,脳の構造と機能インフォームドエッジ属性,すなわち,脳領域の左右半球のアイデンティティとサブネットワークのメンバーシップを組み込むことにより,生物学的に意味のあるトポロジカルパターンを捉えることができる。
我々はBrainATCLを機能的リンク予測と年齢推定の2つのタスクで評価する。
実験結果は、クロスセッション予測シナリオを含む優れた性能と強力な一般化を示す。
関連論文リスト
- Voxel-Level Brain States Prediction Using Swin Transformer [65.9194533414066]
本稿では, 4D Shifted Window (Swin) Transformer をエンコーダとして用い, 時間的情報を効率よく学習し, 畳み込みデコーダを用いて入力fMRIデータと同じ空間的, 時間的解像度で脳状態の予測を可能にするアーキテクチャを提案する。
前回の23.04s fMRI時系列に基づいて7.2sの安静時脳活動を予測すると,高い精度が得られた。
これは、人間の脳の時間的構造が高解像度でSwin Transformerモデルによって学習できることを示す有望な証拠である。
論文 参考訳(メタデータ) (2025-06-13T04:14:38Z) - BrainMAP: Learning Multiple Activation Pathways in Brain Networks [77.15180533984947]
本稿では,脳ネットワークにおける複数の活性化経路を学習するための新しいフレームワークであるBrainMAPを紹介する。
本フレームワークは,タスクに関わる重要な脳領域の説明的分析を可能にする。
論文 参考訳(メタデータ) (2024-12-23T09:13:35Z) - BrainMAE: A Region-aware Self-supervised Learning Framework for Brain Signals [11.030708270737964]
本稿では,fMRI時系列データから直接表現を学習するBrain Masked Auto-Encoder(BrainMAE)を提案する。
BrainMAEは、4つの異なる下流タスクにおいて、確立されたベースラインメソッドをかなりのマージンで一貫して上回っている。
論文 参考訳(メタデータ) (2024-06-24T19:16:24Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - DSAM: A Deep Learning Framework for Analyzing Temporal and Spatial Dynamics in Brain Networks [4.041732967881764]
ほとんどのrs-fMRI研究は、関心のある脳領域にまたがる単一の静的機能接続行列を計算している。
これらのアプローチは、脳のダイナミクスを単純化し、目の前のゴールを適切に考慮していないリスクがある。
本稿では,時系列から直接ゴール固有の機能的接続行列を学習する,解釈可能な新しいディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-19T23:35:06Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
グラフは機能的磁気画像(fMRI)データから得られる脳活動の自然な表現である。
機能的接続ネットワーク(FCN)として知られる解剖学的脳領域のクラスターは、脳の機能や機能不全を理解するのに有用なバイオマーカーとなる時間的関係を符号化することが知られている。
しかし、以前の研究は脳の時間的ダイナミクスを無視し、静的グラフに焦点を当てていた。
本稿では,脳の領域を時間的に進化するコミュニティにクラスタリングし,非教師なしノードの動的埋め込みを学習する動的脳グラフ深部生成モデル(DBGDGM)を提案する。
論文 参考訳(メタデータ) (2023-01-26T20:45:30Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
下流予測タスクによって誘導されるfMRIデータの最適時間変化依存性構造を学習する新しい手法であるDynDepNetを提案する。
実世界のfMRIデータセットの実験は、性別分類のタスクにおいて、DynDepNetが最先端の結果を達成することを実証している。
論文 参考訳(メタデータ) (2022-09-27T16:32:11Z) - Deep Representations for Time-varying Brain Datasets [4.129225533930966]
本稿では、領域マップされたfMRIシーケンスと構造接続性の両方を入力として組み込んだ効率的なグラフニューラルネットワークモデルを構築する。
サンプルレベルの適応的隣接行列を学習することで、潜伏する脳のダイナミクスのよい表現を見つけ出す。
これらのモジュールは容易に適応でき、神経科学領域以外の用途にも有用である可能性がある。
論文 参考訳(メタデータ) (2022-05-23T21:57:31Z) - Learning Dynamic Graph Representation of Brain Connectome with
Spatio-Temporal Attention [33.049423523704824]
本稿では,脳コネクトームの動的グラフ表現を時間的注意とともに学習するSTAGINを提案する。
HCP-RestとHCP-Taskデータセットの実験は,提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2021-05-27T23:06:50Z) - Spatio-Temporal Graph Convolution for Resting-State fMRI Analysis [11.85489505372321]
BOLD時系列の短いサブシーケンスに基づいて、時空間グラフ畳み込みネットワーク(ST-GCN)を訓練し、機能接続の非定常特性をモデル化する。
St-GCNはBOLD信号に基づいて性別や年齢を予測する一般的な手法よりもはるかに正確である。
論文 参考訳(メタデータ) (2020-03-24T01:56:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。