論文の概要: ELF: Efficient Logic Synthesis by Pruning Redundancy in Refactoring
- arxiv url: http://arxiv.org/abs/2508.08073v1
- Date: Mon, 11 Aug 2025 15:18:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-12 21:23:29.166615
- Title: ELF: Efficient Logic Synthesis by Pruning Redundancy in Refactoring
- Title(参考訳): ELF:リファクタリングにおける冗長処理による効率的な論理合成
- Authors: Dimitris Tsaras, Xing Li, Lei Chen, Zhiyao Xie, Mingxuan Yuan,
- Abstract要約: そこで本稿では,不必要な再合成操作を不要にするため,前もって切断を未然に行う手法を提案する。
EPFLベンチマークスイートと10の大規模産業設計を用いたオペレータの実験により、この技術は最先端のABC実装と比較して論理最適化を平均3.9倍高速化できることが示された。
- 参考スコア(独自算出の注目度): 15.62205696947912
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In electronic design automation, logic optimization operators play a crucial role in minimizing the gate count of logic circuits. However, their computation demands are high. Operators such as refactor conventionally form iterative cuts for each node, striving for a more compact representation - a task which often fails 98% on average. Prior research has sought to mitigate computational cost through parallelization. In contrast, our approach leverages a classifier to prune unsuccessful cuts preemptively, thus eliminating unnecessary resynthesis operations. Experiments on the refactor operator using the EPFL benchmark suite and 10 large industrial designs demonstrate that this technique can speedup logic optimization by 3.9x on average compared with the state-of-the-art ABC implementation.
- Abstract(参考訳): 電子設計自動化において、論理最適化演算子は論理回路のゲート数の最小化において重要な役割を果たす。
しかし、その計算要求は高い。
リファクタリングのようなオペレータは、通常、各ノードに対して反復的なカットを形成し、よりコンパクトな表現を目指しています。
従来の研究は並列化による計算コストの軽減を試みてきた。
これとは対照的に,本手法では分類器を利用して前もって切断を未然に行い,不必要な再合成操作を排除している。
EPFLベンチマークスイートと10の大規模産業設計を用いたリファクタリングオペレータの実験により、この技術は最先端のABC実装と比較して論理最適化を平均3.9倍高速化できることが示された。
関連論文リスト
- R-Stitch: Dynamic Trajectory Stitching for Efficient Reasoning [60.37610817226533]
CoT推論(Chain-of-Thought reasoning)は、推論中の中間推論をステップバイステップで促進する。
CoTは、長いトークンシーケンスに対する自己回帰復号化に依存するため、かなりの計算オーバーヘッドを導入している。
本稿では,CoT推論を高速化するトークンレベルの信頼度に基づくハイブリッドデコーディングフレームワークであるR-Stitchを提案する。
論文 参考訳(メタデータ) (2025-07-23T08:14:36Z) - Fast correlated decoding of transversal logical algorithms [67.01652927671279]
大規模計算には量子エラー補正(QEC)が必要であるが、かなりのリソースオーバーヘッドが発生する。
近年の進歩により、論理ゲートからなるアルゴリズムにおいて論理キュービットを共同で復号化することにより、症候群抽出ラウンドの数を削減できることが示されている。
ここでは、回路を介して伝播する関連する論理演算子製品を直接復号することで、回路の復号化の問題を修正する。
論文 参考訳(メタデータ) (2025-05-19T18:00:00Z) - PearSAN: A Machine Learning Method for Inverse Design using Pearson Correlated Surrogate Annealing [66.27103948750306]
PearSANは、大きな設計空間を持つ逆設計問題に適用可能な機械学習支援最適化アルゴリズムである。
ピアソン相関代理モデルを用いて、真の設計計量のメリットの図形を予測する。
最先端の最大設計効率は97%で、少なくとも以前の方法よりも桁違いに高速である。
論文 参考訳(メタデータ) (2024-12-26T17:02:19Z) - Retrieval-Guided Reinforcement Learning for Boolean Circuit Minimization [23.075466444266528]
本研究は論理合成のための学習と探索技術について徹底的に検討する。
ABC-RLは、検索プロセス中に事前学習したエージェントからのレコメンデーションを順応的に調整する、巧妙に調整された$alpha$パラメータである。
その結果, 合成回路のQoR(Quality-of-result)は, 最先端技術と比較して最大24.8%向上した。
論文 参考訳(メタデータ) (2024-01-22T18:46:30Z) - A Circuit Domain Generalization Framework for Efficient Logic Synthesis
in Chip Design [92.63517027087933]
論理合成(LS)の重要な課題は、回路を等価な機能を持つ単純化回路に変換することである。
この課題に対処するため、多くのLS演算子は、入力DAG上の各ノードに根付いたサブグラフに逐次変換を適用する。
本稿では,データ駆動型LS演算子のパラダイムであるPruneXを提案する。
論文 参考訳(メタデータ) (2023-08-22T16:18:48Z) - INVICTUS: Optimizing Boolean Logic Circuit Synthesis via Synergistic
Learning and Search [18.558280701880136]
最先端論理合成アルゴリズムは、多数の論理最小化を持つ。
INVICTUSは、以前に見られた設計のトレーニングデータセットに基づいて、論理最小化のシーケンスを生成する。
論文 参考訳(メタデータ) (2023-05-22T15:50:42Z) - Rethinking Reinforcement Learning based Logic Synthesis [13.18408482571087]
我々は,重要な演算子を自動的に認識し,未知の回路に一般化可能な共通演算子列を生成するRLベースの新しい手法を開発した。
本アルゴリズムは,EPFLベンチマーク,プライベートデータセット,産業規模での回路で検証する。
論文 参考訳(メタデータ) (2022-05-16T12:15:32Z) - Coded Distributed Computing with Partial Recovery [56.08535873173518]
部分回復型符号化計算(CCPR)と呼ばれる新しい符号化行列ベクトル乗法を導入する。
CCPRは計算時間と復号化の複雑さを減らし、精度と計算速度のトレードオフを可能にする。
次に、この手法をより一般的な計算タスクの分散実装に拡張し、部分的回復を伴う符号化通信方式を提案する。
論文 参考訳(メタデータ) (2020-07-04T21:34:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。