論文の概要: COMponent-Aware Pruning for Accelerated Control Tasks in Latent Space Models
- arxiv url: http://arxiv.org/abs/2508.08144v1
- Date: Mon, 11 Aug 2025 16:16:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-12 21:23:29.204489
- Title: COMponent-Aware Pruning for Accelerated Control Tasks in Latent Space Models
- Title(参考訳): 潜時空間モデルにおける加速制御タスクに対するコンポンジェント・アウェア・プルーニング
- Authors: Ganesh Sundaram, Jonas Ulmen, Amjad Haider, Daniel Görges,
- Abstract要約: 資源制約のあるモバイルプラットフォームの急速な成長により、計算効率の良いニューラルネットワークコントローラ(NNC)の需要が高まっている。
ディープニューラルネットワーク(DNN)は、制御アプリケーションにおいて優れたパフォーマンスを示し、その相当な計算複雑性とメモリ要件は、エッジデバイスへの実践的なデプロイに重大な障壁をもたらす。
本稿では,各プルーニング群に対する最適プルーニングサイズを決定するために,コンポーネント認識型構造化プルーニングを利用した包括的モデル圧縮手法を提案する。
- 参考スコア(独自算出の注目度): 1.6874375111244326
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rapid growth of resource-constrained mobile platforms, including mobile robots, wearable systems, and Internet-of-Things devices, has increased the demand for computationally efficient neural network controllers (NNCs) that can operate within strict hardware limitations. While deep neural networks (DNNs) demonstrate superior performance in control applications, their substantial computational complexity and memory requirements present significant barriers to practical deployment on edge devices. This paper introduces a comprehensive model compression methodology that leverages component-aware structured pruning to determine the optimal pruning magnitude for each pruning group, ensuring a balance between compression and stability for NNC deployment. Our approach is rigorously evaluated on Temporal Difference Model Predictive Control (TD-MPC), a state-of-the-art model-based reinforcement learning algorithm, with a systematic integration of mathematical stability guarantee properties, specifically Lyapunov criteria. The key contribution of this work lies in providing a principled framework for determining the theoretical limits of model compression while preserving controller stability. Experimental validation demonstrates that our methodology successfully reduces model complexity while maintaining requisite control performance and stability characteristics. Furthermore, our approach establishes a quantitative boundary for safe compression ratios, enabling practitioners to systematically determine the maximum permissible model reduction before violating critical stability properties, thereby facilitating the confident deployment of compressed NNCs in resource-limited environments.
- Abstract(参考訳): モバイルロボット、ウェアラブルシステム、Internet-of-Thingsデバイスなど、リソースに制約のあるモバイルプラットフォームの急速な成長により、厳格なハードウェア制限下で動作可能な計算効率のよいニューラルネットワークコントローラ(NNC)の需要が高まっている。
ディープニューラルネットワーク(DNN)は、制御アプリケーションにおいて優れたパフォーマンスを示すが、その相当な計算複雑性とメモリ要件は、エッジデバイスへの実践的なデプロイに重大な障壁をもたらす。
本稿では, 各プルーニング群における最適プルーニングサイズを決定するために, コンポーネント認識型構造化プルーニングを利用した包括的モデル圧縮手法を提案し, NNC配置における圧縮と安定性のバランスを確保する。
提案手法は, 時間差モデル予測制御(TD-MPC)を用いて, 数学的安定性保証特性, 特にリャプノフ基準を体系的に統合した, 最先端のモデルベース強化学習アルゴリズムである。
この研究の重要な貢献は、コントローラの安定性を維持しながらモデル圧縮の理論的限界を決定するための原則化されたフレームワークを提供することである。
実験により,本手法が要求制御性能と安定性特性を維持しつつ,モデルの複雑さを低減できることが実証された。
さらに, 安全圧縮比の定量的境界を確立することにより, 限界安定性特性に違反する前に, 最大許容モデル削減を体系的に決定し, 資源限定環境における圧縮NCの確実な展開を容易にする。
関連論文リスト
- Neural Internal Model Control: Learning a Robust Control Policy via Predictive Error Feedback [16.46487826869775]
本稿では,モデルベース制御とRLベース制御を統合し,ロバスト性を高めるニューラル内部モデル制御を提案する。
我々のフレームワークは、剛体力学にニュートン・オイラー方程式を適用することで予測モデルを合理化し、複雑な高次元非線形性を捉える必要がなくなる。
本研究では,四足歩行ロボットと四足歩行ロボットにおけるフレームワークの有効性を実証し,最先端の手法と比較して優れた性能を実現する。
論文 参考訳(メタデータ) (2024-11-20T07:07:42Z) - Lyapunov-stable Neural Control for State and Output Feedback: A Novel Formulation [67.63756749551924]
学習ベースのニューラルネットワーク(NN)制御ポリシは、ロボット工学と制御の幅広いタスクにおいて、印象的な経験的パフォーマンスを示している。
非線形力学系を持つNNコントローラのトラクション領域(ROA)に対するリアプノフ安定性の保証は困難である。
我々は、高速な経験的ファルシフィケーションと戦略的正則化を用いて、Lyapunov証明書とともにNNコントローラを学習するための新しいフレームワークを実証する。
論文 参考訳(メタデータ) (2024-04-11T17:49:15Z) - Integrating DeepRL with Robust Low-Level Control in Robotic Manipulators for Non-Repetitive Reaching Tasks [0.24578723416255746]
ロボット工学では、現代の戦略は学習に基づくもので、複雑なブラックボックスの性質と解釈可能性の欠如が特徴である。
本稿では, 深部強化学習(DRL)に基づく衝突のない軌道プランナと, 自動調整型低レベル制御戦略を統合することを提案する。
論文 参考訳(メタデータ) (2024-02-04T15:54:03Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
ディープニューラルネットワーク(DNN)モデルは、特にリソース制限されたデバイスにおいて、実用的なアプリケーションに不可欠である。
既往の非構造的あるいは構造化された重量刈り法は、推論を真に加速することはほとんど不可能である。
ハードウェア互換のマイクロ構造レベルでの一般化された重み統一フレームワークを提案し,高い圧縮と加速度を実現する。
論文 参考訳(メタデータ) (2021-06-15T17:22:59Z) - Pointwise Feasibility of Gaussian Process-based Safety-Critical Control
under Model Uncertainty [77.18483084440182]
制御バリア関数(CBF)と制御リアプノフ関数(CLF)は、制御システムの安全性と安定性をそれぞれ強化するための一般的なツールである。
本稿では, CBF と CLF を用いた安全クリティカルコントローラにおいて, モデル不確実性に対処するためのガウスプロセス(GP)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-13T23:08:49Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
本稿では,この問題の制御・アフィン特性を捉えた新しい化合物カーネルを提案する。
この結果の最適化問題は凸であることを示し、ガウス過程に基づく制御リャプノフ関数第二次コーンプログラム(GP-CLF-SOCP)と呼ぶ。
論文 参考訳(メタデータ) (2020-11-14T01:27:32Z) - Imposing Robust Structured Control Constraint on Reinforcement Learning
of Linear Quadratic Regulator [0.0]
本稿では,分散学習制御の手法を編み出した汎用構造の設計について述べる。
方法論の開発には、強化学習(RL)と制御理論による十分な安定性と性能保証を併用した考え方を用いる。
6エージェントのマルチエージェントネットワーク上でのシミュレーションによる理論的結果の検証を行った。
論文 参考訳(メタデータ) (2020-11-12T00:31:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。