論文の概要: Generative AI for Critical Infrastructure in Smart Grids: A Unified Framework for Synthetic Data Generation and Anomaly Detection
- arxiv url: http://arxiv.org/abs/2508.08593v1
- Date: Tue, 12 Aug 2025 03:18:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-13 21:07:34.284746
- Title: Generative AI for Critical Infrastructure in Smart Grids: A Unified Framework for Synthetic Data Generation and Anomaly Detection
- Title(参考訳): スマートグリッドにおけるクリティカルインフラストラクチャのための生成AI: 合成データ生成と異常検出のための統一フレームワーク
- Authors: Aydin Zaboli, Junho Hong,
- Abstract要約: 本研究では、生成AI(GenAI)を活用して、ロバストな異常検出システム(ADS)を開発することによる変換的アプローチを提案する。
主な貢献は、GOOSEメッセージ用の合成およびバランスの取れたデータセットを生成するために提案されたAATM(Advanced Adversarial Traffic mutation)技術である。
The implementation of GenAI-based ADSs with the task-oriented dialogue (ToD) process has been investigated to improve detection of attack pattern。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In digital substations, security events pose significant challenges to the sustained operation of power systems. To mitigate these challenges, the implementation of robust defense strategies is critically important. A thorough process of anomaly identification and detection in information and communication technology (ICT) frameworks is crucial to ensure secure and reliable communication and coordination between interconnected devices within digital substations. Hence, this paper addresses the critical cybersecurity challenges confronting IEC61850-based digital substations within modern smart grids, where the integration of advanced communication protocols, e.g., generic object-oriented substation event (GOOSE), has enhanced energy management and introduced significant vulnerabilities to cyberattacks. Focusing on the limitations of traditional anomaly detection systems (ADSs) in detecting threats, this research proposes a transformative approach by leveraging generative AI (GenAI) to develop robust ADSs. The primary contributions include the suggested advanced adversarial traffic mutation (AATM) technique to generate synthesized and balanced datasets for GOOSE messages, ensuring protocol compliance and enabling realistic zero-day attack pattern creation to address data scarcity. Then, the implementation of GenAI-based ADSs incorporating the task-oriented dialogue (ToD) processes has been explored for improved detection of attack patterns. Finally, a comparison of the GenAI-based ADS with machine learning (ML)-based ADSs has been implemented to showcase the outperformance of the GenAI-based frameworks considering the AATM-generated GOOSE datasets and standard/advanced performance evaluation metrics.
- Abstract(参考訳): デジタル変電所では、セキュリティイベントは電力システムの持続的な運用に重大な課題をもたらす。
これらの課題を緩和するためには、堅牢な防衛戦略の実装が極めて重要である。
情報通信技術(ICT)フレームワークにおける異常識別と検出の徹底的なプロセスは、デジタルサブステーション内の相互接続デバイス間のセキュアで信頼性の高い通信と協調を確保するために重要である。
そこで本稿では,IEC61850をベースとした最新のスマートグリッド内のデジタルサブステーションに直面する重要なサイバーセキュリティ問題に対処し,汎用オブジェクト指向サブステーションイベント(GOOSE)などの高度な通信プロトコルの統合により,エネルギー管理が強化され,サイバー攻撃に重大な脆弱性が導入された。
本研究では、脅威検出における従来の異常検出システム(ADS)の限界に着目し、ジェネレーティブAI(GenAI)を活用して堅牢なADSを開発することにより、変革的アプローチを提案する。
主なコントリビューションは、GOOSEメッセージ用の合成およびバランスの取れたデータセットを生成し、プロトコルコンプライアンスを保証し、データ不足に対処するために、現実的なゼロデイアタックパターン生成を可能にする、Advanced Adversarial Traffic mutation (AATM)技術である。
そこで, タスク指向対話(ToD)プロセスを取り入れたGenAIベースのADSの実装を, 攻撃パターンの検出を改善するために検討した。
最後に、AATMが生成するGOOSEデータセットと標準/高度なパフォーマンス評価指標を考慮して、GenAIベースのフレームワークのパフォーマンス向上を示すために、GenAIベースのADSと機械学習(ML)ベースのADSを比較した。
関連論文リスト
- Generative AI-Empowered Secure Communications in Space-Air-Ground Integrated Networks: A Survey and Tutorial [107.26005706569498]
宇宙航空地上統合ネットワーク(SAGIN)は、その特性上、前例のないセキュリティ上の課題に直面している。
Generative AI(GAI)は、データを合成し、セマンティクスを理解し、自律的な決定を行うことで、SAGINセキュリティを保護できる変革的アプローチである。
論文 参考訳(メタデータ) (2025-08-04T01:42:57Z) - Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
計算安全性は、GenAIにおける安全性の定量的評価、定式化、研究を可能にする数学的枠組みである。
ジェイルブレイクによる悪意のあるプロンプトを検出するために, 感度解析と損失景観解析がいかに有効かを示す。
我々は、AIの安全性における信号処理の鍵となる研究課題、機会、そして重要な役割について論じる。
論文 参考訳(メタデータ) (2025-02-18T02:26:50Z) - AI-in-the-Loop Sensing and Communication Joint Design for Edge Intelligence [65.29835430845893]
本稿では,AI-in-the-loopジョイントセンシングと通信によるエッジインテリジェンス向上のためのフレームワークを提案する。
私たちの研究の重要な貢献は、バリデーション損失とシステムのチューニング可能なパラメータとの間に明確な関係を確立することです。
提案手法は, 通信エネルギー消費を最大77%削減し, 試料数で測定した検知コストを最大52%削減する。
論文 参考訳(メタデータ) (2025-02-14T14:56:58Z) - Leveraging Conversational Generative AI for Anomaly Detection in Digital Substations [0.0]
提案したADフレームワークとHITLベースのADフレームワークの比較評価を行うために,高度なパフォーマンス指標を採用している。
このアプローチは、サイバーセキュリティの課題が進展する中で、電力系統運用の信頼性を高めるための有望なソリューションを提供する。
論文 参考訳(メタデータ) (2024-11-09T18:38:35Z) - A Novel Generative AI-Based Framework for Anomaly Detection in Multicast Messages in Smart Grid Communications [0.0]
デジタル変電所におけるサイバーセキュリティ侵害は、電力系統の運用の安定性と信頼性に重大な課題をもたらす。
本稿では,マルチキャストメッセージのデータセットにおける異常検出(AD)のためのタスク指向対話システムを提案する。
潜在的なエラーが低く、人間の推奨するサイバーセキュリティガイドラインを考えるプロセスよりもスケーラビリティと適応性が向上します。
論文 参考訳(メタデータ) (2024-06-08T13:28:50Z) - Attention-GAN for Anomaly Detection: A Cutting-Edge Approach to
Cybersecurity Threat Management [0.0]
本稿では,異常検出に焦点をあてた,サイバーセキュリティ向上のための革新的な注意-GANフレームワークを提案する。
提案手法は、多様なリアルな合成攻撃シナリオを生成し、データセットを充実させ、脅威識別を改善することを目的としている。
GAN(Generative Adversarial Networks)と注意機構を統合することが提案手法の重要な特徴である。
attention-GANフレームワークは先駆的なアプローチとして登場し、高度なサイバー防御戦略のための新しいベンチマークを設定している。
論文 参考訳(メタデータ) (2024-02-25T01:10:55Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence(GAI)は、AIイノベーションの最前線に立ち、多様なコンテンツを生成するための急速な進歩と非並行的な能力を示す。
本稿では,通信ネットワークの物理層におけるセキュリティ向上におけるGAIの様々な応用について,広範な調査を行う。
私たちは、物理的レイヤセキュリティの課題に対処する上で、GAIの役割を掘り下げ、通信の機密性、認証、可用性、レジリエンス、整合性に重点を置いています。
論文 参考訳(メタデータ) (2024-02-21T06:22:41Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
デジタルツイン(DT)は、物理世界の仮想表現と通信(例えば6G)、コンピュータ、人工知能(AI)技術を活用して、多くの接続されたインテリジェンスサービスを実現する。
無線システムは、厳密な通信制約下での情報意思決定を容易にするために意味コミュニケーション(SC)のパラダイムを利用することができる。
DTベースの無線システムでは,因果意味通信(CSC)と呼ばれる新しいフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-04-25T00:15:00Z) - FedDiSC: A Computation-efficient Federated Learning Framework for Power
Systems Disturbance and Cyber Attack Discrimination [1.0621485365427565]
本稿では,フェデレート学習に基づくプライバシ保護と通信効率の高い攻撃検出フレームワークであるFedDiSCを提案する。
我々は、電力システムとサイバーセキュリティの異常を正確に検出するために、表現学習に基づくDeep Auto-Encoderネットワークを提案する。
提案手法を現実のサイバー攻撃検出のタイムラインに適応させるために,DP-SIGNSGDとして知られる勾配プライバシー保護量子化方式を利用する。
論文 参考訳(メタデータ) (2023-04-07T13:43:57Z) - Cross-Layered Distributed Data-driven Framework For Enhanced Smart Grid
Cyber-Physical Security [3.8237485961848128]
Adaptive Statisticsを使用したクロスレイヤアンサンブルCorrDetが紹介される。
故障したSG測定データの検出と、ネットワーク間時間と送信遅延の一貫性の欠如を統合する。
その結果,CECD-ASは複数のFalse Data Injection, Denial of Service (DoS) および Man In The Middle (MITM) 攻撃を高いF1スコアで検出できることがわかった。
論文 参考訳(メタデータ) (2021-11-10T00:00:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。