論文の概要: Hierarchical Variable Importance with Statistical Control for Medical Data-Based Prediction
- arxiv url: http://arxiv.org/abs/2508.08724v1
- Date: Tue, 12 Aug 2025 08:10:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-13 21:07:34.345858
- Title: Hierarchical Variable Importance with Statistical Control for Medical Data-Based Prediction
- Title(参考訳): 医療データに基づく予測のための統計的制御による階層的変動の重要性
- Authors: Joseph Paillard, Antoine Collas, Denis A. Engemann, Bertrand Thirion,
- Abstract要約: モデルに依存しない変数重要度尺度である階層CPIを導入する。
階層木に沿った部分群を探索することで、計算的に抽出可能でありながら、家族的な誤り率の明確な制御も楽しめる。
その効果は2つのニューロイメージングデータセットで示される。
- 参考スコア(独自算出の注目度): 35.94354098982828
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in machine learning have greatly expanded the repertoire of predictive methods for medical imaging. However, the interpretability of complex models remains a challenge, which limits their utility in medical applications. Recently, model-agnostic methods have been proposed to measure conditional variable importance and accommodate complex non-linear models. However, they often lack power when dealing with highly correlated data, a common problem in medical imaging. We introduce Hierarchical-CPI, a model-agnostic variable importance measure that frames the inference problem as the discovery of groups of variables that are jointly predictive of the outcome. By exploring subgroups along a hierarchical tree, it remains computationally tractable, yet also enjoys explicit family-wise error rate control. Moreover, we address the issue of vanishing conditional importance under high correlation with a tree-based importance allocation mechanism. We benchmarked Hierarchical-CPI against state-of-the-art variable importance methods. Its effectiveness is demonstrated in two neuroimaging datasets: classifying dementia diagnoses from MRI data (ADNI dataset) and analyzing the Berger effect on EEG data (TDBRAIN dataset), identifying biologically plausible variables.
- Abstract(参考訳): 機械学習の最近の進歩は、医用画像の予測手法のレパートリーを大きく広げている。
しかし、複雑なモデルの解釈性は依然として課題であり、医療応用における実用性を制限している。
近年、条件変数の重要度を測定し、複雑な非線形モデルに対応するモデル非依存手法が提案されている。
しかし、医療画像の一般的な問題である高度に相関したデータを扱う際には、しばしば能力が欠落する。
モデルに依存しない変数重要度尺度である階層CPIを導入する。
階層木に沿った部分群を探索することで、計算的に抽出可能でありながら、家族的な誤り率の明確な制御も楽しめる。
さらに,木に基づく重要度配分機構と高い相関関係にある条件付き重要度を解消する問題に対処する。
我々は階層型CPIを最先端の可変重要手法と比較した。
その効果は、認知症の診断をMRIデータ(ADNIデータセット)から分類し、脳波データ(TDBRAINデータセット)に対するバーガー効果を分析し、生物学的に妥当な変数を同定する2つのニューロイメージングデータセットで実証されている。
関連論文リスト
- Identifying biological perturbation targets through causal differential networks [23.568795598997376]
本稿では,生物学的システムの変更に責任を持つ変数を同定する因果性に着想を得たアプローチを提案する。
まず、観測データと干渉データからノイズの多い因果グラフを推定する。
次に、これらのグラフ間の差分を、追加の統計的特徴とともに、介入された変数の集合にマッピングすることを学ぶ。
論文 参考訳(メタデータ) (2024-10-04T12:48:21Z) - Large-Scale Targeted Cause Discovery with Data-Driven Learning [66.86881771339145]
本稿では,観測結果から対象変数の因果変数を推定する機械学習手法を提案する。
ローカル推論戦略を用いることで、我々のアプローチは変数数に線形な複雑さを伴ってスケールし、数千の変数に効率的にスケールアップする。
大規模遺伝子制御ネットワークにおける因果関係の同定に優れた性能を示す実験結果が得られた。
論文 参考訳(メタデータ) (2024-08-29T02:21:11Z) - Texture Feature Analysis for Classification of Early-Stage Prostate Cancer in mpMRI [0.0]
本研究では,一階統計的特徴,ハラリックテクスチャ的特徴,および局所二分法パターンによる分類への寄与を分析した。
我々は、分類結果を決定する少数の特徴を特定し、説明可能なAIアプローチの開発に役立つかもしれない。
論文 参考訳(メタデータ) (2024-06-21T18:12:58Z) - A Demographic-Conditioned Variational Autoencoder for fMRI Distribution Sampling and Removal of Confounds [49.34500499203579]
変動型オートエンコーダ(VAE)ベースのモデルであるDemoVAEを作成し、人口統計学から fMRI の特徴を推定する。
ユーザが供給する人口動態に基づいて,高品質な合成fMRIデータを生成する。
論文 参考訳(メタデータ) (2024-05-13T17:49:20Z) - Unmasking Dementia Detection by Masking Input Gradients: A JSM Approach
to Model Interpretability and Precision [1.5501208213584152]
本稿では,多段階進行に対するアルツハイマー病(AD)分類の解釈可能なマルチモーダルモデルを導入し,ヤコビアン・サリエンシ・マップ(JSM)をモダリティに依存しないツールとして組み込んだ。
アブレーション研究を含む評価では、モデルデバッグと解釈にJSMを用いることの有効性が示され、モデル精度も著しく向上した。
論文 参考訳(メタデータ) (2024-02-25T06:53:35Z) - Variable Importance in High-Dimensional Settings Requires Grouping [19.095605415846187]
Conditional Permutation Importance (CPI)は、そのような場合のPIの制限をバイパスする。
クラスタリングまたはいくつかの事前知識を介して統計的に変数をグループ化すると、ある程度のパワーバックが得られる。
重み付けにより拡張された手法は,高相関なグループであっても,型Iエラーを制御可能であることを示す。
論文 参考訳(メタデータ) (2023-12-18T00:21:47Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
我々はマルコフモデルとセミマルコフモデルの急激な変分を分解するツールを開発する。
突発効果の非パラメトリック分解を可能にする最初の結果を証明する。
説明可能なAIや公平なAIから、疫学や医学における疑問まで、いくつかの応用がある。
論文 参考訳(メタデータ) (2023-06-08T09:40:28Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Handling Non-ignorably Missing Features in Electronic Health Records
Data Using Importance-Weighted Autoencoders [8.518166245293703]
本稿では,生体データのランダムなパターンではなく,欠落を柔軟に扱うために,重要度重み付きオートエンコーダ(iwaes)と呼ばれるvaesの新たな拡張を提案する。
提案手法は,組み込みニューラルネットワークを用いて欠落機構をモデル化し,欠落機構の正確な形式を事前に指定する必要をなくした。
論文 参考訳(メタデータ) (2021-01-18T22:53:29Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。