論文の概要: Intrinsic Memory Agents: Heterogeneous Multi-Agent LLM Systems through Structured Contextual Memory
- arxiv url: http://arxiv.org/abs/2508.08997v1
- Date: Tue, 12 Aug 2025 15:05:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-13 21:07:34.470751
- Title: Intrinsic Memory Agents: Heterogeneous Multi-Agent LLM Systems through Structured Contextual Memory
- Title(参考訳): 内在記憶エージェント:構造記憶による異種多エージェントLDMシステム
- Authors: Sizhe Yuen, Francisco Gomez Medina, Ting Su, Yali Du, Adam J. Sobey,
- Abstract要約: LLM(Large Language Models)上に構築されたマルチエージェントシステムは、複雑な協調的な問題解決に非常に有望である。
しかし、それらは、メモリの一貫性を損なうコンテキストウィンドウの制限、役割の順守、手続き的整合性といった根本的な課題に直面します。
本稿では,エージェント固有のメモリを通じて,これらの制限に対処する新しいフレームワークであるIntrinsic Memory Agentsを紹介する。
- 参考スコア(独自算出の注目度): 3.8482387279540555
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-agent systems built on Large Language Models (LLMs) show exceptional promise for complex collaborative problem-solving, yet they face fundamental challenges stemming from context window limitations that impair memory consistency, role adherence, and procedural integrity. This paper introduces Intrinsic Memory Agents, a novel framework that addresses these limitations through structured agent-specific memories that evolve intrinsically with agent outputs. Specifically, our method maintains role-aligned memory templates that preserve specialized perspectives while focusing on task-relevant information. We benchmark our approach on the PDDL dataset, comparing its performance to existing state-of-the-art multi-agentic memory approaches and showing an improvement of 38.6\% with the highest token efficiency. An additional evaluation is performed on a complex data pipeline design task, we demonstrate that our approach produces higher quality designs when comparing 5 metrics: scalability, reliability, usability, cost-effectiveness and documentation with additional qualitative evidence of the improvements. Our findings suggest that addressing memory limitations through structured, intrinsic approaches can improve the capabilities of multi-agent LLM systems on structured planning tasks.
- Abstract(参考訳): LLM(Large Language Models)上に構築されたマルチエージェントシステムは、複雑な協調的な問題解決に非常に期待できるが、メモリの一貫性を損なうコンテキストウィンドウの制限、役割の順守、手続き的整合性といった根本的な課題に直面している。
本稿では,エージェント出力を内在的に進化させる構造化されたエージェント固有のメモリを通じて,これらの制限に対処する新しいフレームワークであるIntrinsic Memory Agentsを紹介する。
具体的には,タスク関連情報に着目しながら,特別な視点を保った役割整合型メモリテンプレートを保守する。
我々はPDDLデータセットに対する我々のアプローチをベンチマークし、その性能を既存の最先端マルチエージェントメモリアプローチと比較し、最高トークン効率で38.6\%の改善を示した。
複雑なデータパイプライン設計タスクにおいて,拡張性,信頼性,ユーザビリティ,コスト効率,ドキュメントなど5つの指標を比較することで,より高品質な設計を実現していることを示す。
本研究は, 構造的, 内在的アプローチによるメモリ制限に対処することで, 構造的計画タスクにおけるマルチエージェントLLMシステムの能力を向上させることを示唆する。
関連論文リスト
- RCR-Router: Efficient Role-Aware Context Routing for Multi-Agent LLM Systems with Structured Memory [57.449129198822476]
RCRは、マルチエージェント大言語モデル(LLM)システムのためのロールアウェアコンテキストルーティングフレームワークである。
役割とタスクステージに基づいて、各エージェントに対して意味的に関連するメモリサブセットを動的に選択する。
軽量スコアリングポリシは、メモリ選択をガイドし、エージェント出力を共有メモリストアに統合する。
論文 参考訳(メタデータ) (2025-08-06T21:59:34Z) - Hierarchical Memory for High-Efficiency Long-Term Reasoning in LLM Agents [19.04968632268433]
大規模言語モデルエージェント(LLMエージェント)のための階層型メモリアーキテクチャを提案する。
各メモリベクトルは、次の層のセマンティック関連サブメモリを指し示す位置インデックスが埋め込まれている。
推論フェーズにおいて、インデックスベースのルーティング機構は、網羅的な類似性計算を行うことなく、効率的な層間検索を可能にする。
論文 参考訳(メタデータ) (2025-07-23T12:45:44Z) - Evaluating Memory in LLM Agents via Incremental Multi-Turn Interactions [19.51727855436013]
メモリ機構を持つエージェントをメモリエージェントと呼ぶ。
本稿では,メモリエージェントに不可欠な4つのコア能力,すなわち,正確な検索,テスト時間学習,長距離理解,コンフリクト解決の4つを同定する。
既存のデータセットは、限られたコンテキスト長に依存するか、書籍ベースのQAのような静的で長いコンテキスト設定用に調整されている。
既存のベンチマークでは4つの能力をすべてカバーしていないため、メモリエージェント用に特別に設計された新しいベンチマークであるMemoryAgentBenchを紹介します。
論文 参考訳(メタデータ) (2025-07-07T17:59:54Z) - MemOS: A Memory OS for AI System [116.87568350346537]
大規模言語モデル(LLM)は、人工知能(AGI)にとって不可欠な基盤となっている。
既存のモデルは、主に静的パラメータと短命なコンテキスト状態に依存しており、ユーザの好みを追跡したり、長い期間にわたって知識を更新する能力を制限する。
MemOSはメモリを管理可能なシステムリソースとして扱うメモリオペレーティングシステムである。
論文 参考訳(メタデータ) (2025-07-04T17:21:46Z) - PersonalAI: A Systematic Comparison of Knowledge Graph Storage and Retrieval Approaches for Personalized LLM agents [15.524189150821147]
大規模言語モデル (LLM) とRetrieval-Augmented Generation (RAG) の組み合わせは、複雑な長期的相互作用においてスケールできない。
LLM自体によって自動的に構築・更新される知識グラフに基づくフレキシブルな外部メモリフレームワークを提案する。
AriGraphアーキテクチャに基づいて、標準エッジと2種類のハイパーエッジの両方をサポートする新しいハイブリッドグラフ設計を導入する。
本稿では,TriviaQA,HotpotQA,DiaASQ-demonstratingの3つのベンチマークを用いて,メモリと検索の異なる構成でタスクに応じて最適な性能が得られることを示す。
論文 参考訳(メタデータ) (2025-06-20T13:52:15Z) - Mem0: Building Production-Ready AI Agents with Scalable Long-Term Memory [0.5584627289325719]
大規模言語モデル(LLM)は、文脈的に一貫性のある応答を生成する際、顕著な進歩を示した。
しかし、それらの固定されたコンテキストウィンドウは、長時間のマルチセッション対話に対する一貫性を維持するための根本的な課題を生じさせる。
私たちはMem0というスケーラブルなメモリ中心アーキテクチャを導入し、進行中の会話から健全な情報を動的に抽出し、統合し、取得することでこの問題に対処します。
論文 参考訳(メタデータ) (2025-04-28T01:46:35Z) - Memory Sharing for Large Language Model based Agents [43.53494041932615]
本稿では,リアルタイムメモリフィルタ,ストレージ,検索を統合し,In-Context学習プロセスを強化するためのフレームワークであるMemory Sharingを紹介する。
実験の結果,MSフレームワークはオープンな質問に対処する際のエージェントの性能を大幅に改善することが示された。
論文 参考訳(メタデータ) (2024-04-15T17:57:30Z) - RET-LLM: Towards a General Read-Write Memory for Large Language Models [53.288356721954514]
RET-LLMは、大規模な言語モデルに一般的な読み書きメモリユニットを装備する新しいフレームワークである。
デビッドソンのセマンティクス理論に触発され、三重項の形で知識を抽出し保存する。
本フレームワークは,時間に基づく質問応答タスクの処理において,堅牢な性能を示す。
論文 参考訳(メタデータ) (2023-05-23T17:53:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。