論文の概要: Dynamic Multi-Agent System with Stable Maneuvering for Robust GAIA Problem Solving by AWorld
- arxiv url: http://arxiv.org/abs/2508.09889v2
- Date: Mon, 18 Aug 2025 12:06:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-19 12:43:44.896816
- Title: Dynamic Multi-Agent System with Stable Maneuvering for Robust GAIA Problem Solving by AWorld
- Title(参考訳): AWorldによるロバストGAIA問題の解法のための安定マニキュアを用いた動的マルチエージェントシステム
- Authors: Zhitian Xie, Qintong Wu, Chengyue Yu, Chenyi Zhuang, Jinjie Gu,
- Abstract要約: 我々はAWorldフレームワーク内に、堅牢で動的なマルチエージェントシステム(MAS)アーキテクチャを導入します。
我々のアプローチでは、実行エージェントがガードエージェントを重要なステップで起動し、推論プロセスの検証と修正を行います。
GAIAテストデータセットの実験により、我々の動的操作機構は解の有効性と安定性の両方を著しく改善することが明らかとなった。
- 参考スコア(独自算出の注目度): 9.032183661061813
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rapid advancement of large language models (LLMs) has empowered intelligent agents to leverage diverse external tools for solving complex real-world problems. However, as agents increasingly depend on multiple tools, they encounter new challenges: extended contexts from disparate sources and noisy or irrelevant tool outputs can undermine system reliability and accuracy. These challenges underscore the necessity for enhanced stability in agent-based systems. To address this, we introduce dynamic supervision and maneuvering mechanisms, constructing a robust and dynamic Multi-Agent System (MAS) architecture within the AWorld framework. In our approach, the Execution Agent invokes the Guard Agent at critical steps to verify and correct the reasoning process, effectively reducing errors arising from noise and bolstering problem-solving robustness. Extensive experiments on the GAIA test dataset reveal that our dynamic maneuvering mechanism significantly improves both the effectiveness and stability of solutions, outperforming single-agent system (SAS) and standard tool-augmented systems. As a result, our dynamic MAS system achieved first place among open-source projects on the prestigious GAIA leaderboard. These findings highlight the practical value of collaborative agent roles in developing more reliable and trustworthy intelligent systems.
- Abstract(参考訳): 大規模言語モデル(LLM)の急速な進歩により、知的エージェントは複雑な現実世界の問題を解決するために多様な外部ツールを活用することができるようになった。
しかし、エージェントはますます複数のツールに依存しているため、異なるソースからのコンテキストの拡張や、ノイズや無関係なツール出力はシステムの信頼性と正確性を損なう可能性がある。
これらの課題はエージェントベースのシステムの安定性向上の必要性を浮き彫りにした。
そこで本研究では,AWorldフレームワーク内で,堅牢で動的なマルチエージェントシステム(MAS)アーキテクチャを構築することにより,動的監視機構と操作機構を導入する。
本手法では, 騒音による誤りを効果的に低減し, 問題解決の堅牢性を高めるため, ガードエージェントを重要なステップで起動し, 推論プロセスの検証と修正を行う。
GAIAテストデータセットの大規模な実験により、我々の動的操作機構は、ソリューションの有効性と安定性の両方を著しく改善し、単一エージェントシステム(SAS)と標準ツール拡張システムより優れています。
その結果,我々の動的MASシステムはGAIAリーダーボード上でのオープンソースプロジェクトの中で第一位となった。
これらの知見は、より信頼性が高く信頼性の高いインテリジェントシステムを開発する上で、協調エージェントの役割の実践的価値を浮き彫りにしている。
関連論文リスト
- Aime: Towards Fully-Autonomous Multi-Agent Framework [13.494469496862534]
大規模言語モデル(LLM)を利用したマルチエージェントシステム(MAS)は、複雑で多面的な問題を解決するための強力なパラダイムとして浮上している。
これらのシステムのポテンシャルは、しばしば、臨界的な制限に悩まされる一般的なプラン・アンド・エグゼクティブ・フレームワークによって制約される。
本稿では、動的でリアクティブな計画と実行を通じてこれらの課題を克服するために設計された、新しいマルチエージェントフレームワークであるAimeを紹介する。
論文 参考訳(メタデータ) (2025-07-16T07:38:28Z) - SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models [8.912091484067508]
SV-LLMは,システムオンチップ(SoC)セキュリティ検証の自動化と強化を目的とした,新しいマルチエージェントアシスタントシステムである。
検証質問応答、セキュリティ資産の識別、脅威モデリング、テスト計画とプロパティ生成、脆弱性検出、シミュレーションベースのバグ検証といったタスクのための特別なエージェントを統合することで、SV-LLMはワークフローを合理化する。
このシステムは,手作業による介入を減らすこと,精度の向上,セキュリティ分析の高速化,設計サイクルの初期段階におけるリスクの積極的な識別と緩和を支援することを目的としている。
論文 参考訳(メタデータ) (2025-06-25T13:31:13Z) - Towards Agentic Recommender Systems in the Era of Multimodal Large Language Models [75.4890331763196]
大規模言語モデル(LLM)の最近のブレークスルーは、エージェントAIシステムの出現につながっている。
LLMベースのAgentic RS(LLM-ARS)は、よりインタラクティブで、コンテキストを認識し、プロアクティブなレコメンデーションを提供する。
論文 参考訳(メタデータ) (2025-03-20T22:37:15Z) - Multi-Agent Risks from Advanced AI [90.74347101431474]
先進的なAIのマルチエージェントシステムは、新規で未発見のリスクを生じさせる。
エージェントのインセンティブに基づく3つの重要な障害モードと7つの重要なリスク要因を同定する。
各リスクのいくつかの重要な事例と、それらを緩和するための有望な方向性を強調します。
論文 参考訳(メタデータ) (2025-02-19T23:03:21Z) - Position: Towards a Responsible LLM-empowered Multi-Agent Systems [22.905804138387854]
Agent AIとLarge Language Model-powered Multi-Agent Systems (LLM-MAS)の台頭は、責任と信頼性のあるシステム操作の必要性を浮き彫りにした。
LLMエージェントは固有の予測不能を示し、出力の不確実性は複雑になり、システムの安定性を脅かす。
これらのリスクに対処するためには、アクティブな動的モデレーションを備えた人間中心の設計アプローチが不可欠である。
論文 参考訳(メタデータ) (2025-02-03T16:04:30Z) - Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement [112.04307762405669]
G"odel AgentはG"odelマシンにインスパイアされた自己進化型フレームワークである。
G"odel Agentは、パフォーマンス、効率、一般化性において手作業によるエージェントを上回る、継続的な自己改善を実現することができる。
論文 参考訳(メタデータ) (2024-10-06T10:49:40Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
マルチエージェントシステムにおけるエージェント指向計画のための新しいフレームワークであるAOPを提案する。
本研究では, エージェント指向計画の3つの重要な設計原則, 可解性, 完全性, 非冗長性を明らかにする。
大規模実験は,マルチエージェントシステムにおける単一エージェントシステムと既存の計画戦略と比較して,現実の問題を解決する上でのAOPの進歩を実証している。
論文 参考訳(メタデータ) (2024-10-03T04:07:51Z) - EvoAgent: Towards Automatic Multi-Agent Generation via Evolutionary Algorithms [55.77492625524141]
EvoAgentは、特殊エージェントをマルチエージェントシステムに自動的に拡張するジェネリックメソッドである。
EvoAgent は LLM エージェントのタスク解決能力を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2024-06-20T11:49:23Z) - AIOS: LLM Agent Operating System [39.59087894012381]
本稿では,LLMベースのエージェント管理のコンテキスト下で,AIOS(LLMベースのAIエージェントオペレーティングシステム)のアーキテクチャを提案する。
エージェントアプリケーションからリソースとLLM固有のサービスをAIOSカーネルに分離することで、LLMベースのエージェントを提供するための新しいアーキテクチャを導入する。
AIOSを使用すると、さまざまなエージェントフレームワークで構築されたエージェントを最大2.1倍高速に実行することができる。
論文 参考訳(メタデータ) (2024-03-25T17:32:23Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScopeは、メッセージ交換をコアコミュニケーションメカニズムとする、開発者中心のマルチエージェントプラットフォームである。
豊富な構文ツール、組み込みエージェントとサービス機能、アプリケーションのデモとユーティリティモニタのためのユーザフレンドリなインターフェース、ゼロコードプログラミングワークステーション、自動プロンプトチューニング機構により、開発とデプロイメントの両方の障壁は大幅に低下した。
論文 参考訳(メタデータ) (2024-02-21T04:11:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。