論文の概要: GenOM: Ontology Matching with Description Generation and Large Language Model
- arxiv url: http://arxiv.org/abs/2508.10703v1
- Date: Thu, 14 Aug 2025 14:48:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-15 22:24:48.36251
- Title: GenOM: Ontology Matching with Description Generation and Large Language Model
- Title(参考訳): GenOM:オントロジーと記述生成と大規模言語モデル
- Authors: Yiping Song, Jiaoyan Chen, Renate A. Schmidt,
- Abstract要約: 本稿では,大規模言語モデル(LLM)に基づくオントロジーアライメントフレームワークであるGenOMを紹介する。
OAEI Bio-MLトラックで行った実験は、GenOMがしばしば競争力を発揮することを示した。
- 参考スコア(独自算出の注目度): 19.917106654694894
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ontology matching (OM) plays an essential role in enabling semantic interoperability and integration across heterogeneous knowledge sources, particularly in the biomedical domain which contains numerous complex concepts related to diseases and pharmaceuticals. This paper introduces GenOM, a large language model (LLM)-based ontology alignment framework, which enriches the semantic representations of ontology concepts via generating textual definitions, retrieves alignment candidates with an embedding model, and incorporates exact matching-based tools to improve precision. Extensive experiments conducted on the OAEI Bio-ML track demonstrate that GenOM can often achieve competitive performance, surpassing many baselines including traditional OM systems and recent LLM-based methods. Further ablation studies confirm the effectiveness of semantic enrichment and few-shot prompting, highlighting the framework's robustness and adaptability.
- Abstract(参考訳): オントロジーマッチング(OM)は異種知識ソース間のセマンティック・インターオペラビリティと統合を可能にする上で重要な役割を担っている。
本稿では,大規模言語モデル(LLM)に基づくオントロジーアライメントフレームワークであるGenOMを紹介し,テキスト定義の生成を通じてオントロジー概念のセマンティック表現を充実させ,アライメント候補を埋め込みモデルで検索し,正確なマッチングベースのツールを組み込んで精度を向上させる。
OAEI Bio-MLトラックで実施された大規模な実験は、GenOMが従来のOMシステムや最近のLCMベースの手法を含む多くのベースラインを越えながら、しばしば競争性能を達成することを示した。
さらなるアブレーション研究は、セマンティックエンリッチメントと数発のプロンプトの有効性を確認し、フレームワークの堅牢性と適応性を強調している。
関連論文リスト
- KROMA: Ontology Matching with Knowledge Retrieval and Large Language Models [7.525546531795111]
KROMAはLarge Language Models(LLM)をRetrieval-Augmented Generationパイプライン内で利用する新しいフレームワークである。
性能と効率の両面を最適化するために、KROMAは二相性に基づく概念マッチングと軽量なオントロジー改善ステップを統合している。
論文 参考訳(メタデータ) (2025-07-18T16:00:11Z) - MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention [52.106879463828044]
病理組織学と転写学は、腫瘍学の基本的なモダリティであり、疾患の形態学的および分子的側面を包含している。
モーダルアライメントと保持を両立させる新しいマルチモーダル表現学習法であるMIRRORを提案する。
がんの亜型化と生存分析のためのTCGAコホートに関する広範囲な評価は,MIRRORの優れた性能を浮き彫りにしている。
論文 参考訳(メタデータ) (2025-03-01T07:02:30Z) - Biology Instructions: A Dataset and Benchmark for Multi-Omics Sequence Understanding Capability of Large Language Models [51.316001071698224]
本稿では,生物配列関連命令チューニングデータセットであるBiology-Instructionsを紹介する。
このデータセットは、大きな言語モデル(LLM)と複雑な生物学的シーケンスに関連するタスクのギャップを埋めることができます。
また、新たな3段階トレーニングパイプラインを備えたChatMultiOmicsという強力なベースラインも開発しています。
論文 参考訳(メタデータ) (2024-12-26T12:12:23Z) - Unified Representation of Genomic and Biomedical Concepts through Multi-Task, Multi-Source Contrastive Learning [45.6771125432388]
言語モデル(genEREL)を用いたジェノミクス表現について紹介する。
GENERELは遺伝学と生物医学の知識基盤を橋渡しするために設計されたフレームワークである。
本実験は,SNPと臨床概念のニュアンス関係を効果的に把握するgenERELの能力を実証するものである。
論文 参考訳(メタデータ) (2024-10-14T04:19:52Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - Towards Ontology-Enhanced Representation Learning for Large Language Models [0.18416014644193066]
本稿では,知識を参照オントロジーで注入することで,埋め込み言語モデル(埋め込み言語モデル)の関心を高める新しい手法を提案する。
言語情報(概念同義語と記述)と構造情報(is-a関係)は、包括的な概念定義の集合をコンパイルするために使用される。
これらの概念定義は、対照的な学習フレームワークを使用して、ターゲットの埋め込み-LLMを微調整するために使用される。
論文 参考訳(メタデータ) (2024-05-30T23:01:10Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
我々は、軽量なアダプターモジュールを用いて、構造化された生体医学的知識を事前訓練された言語モデルに注入するアプローチを開発した。
バイオメディカル知識システムUMLSと新しいバイオケミカルOntoChemの2つの大きなKGと、PubMedBERTとBioLinkBERTの2つの著名なバイオメディカルPLMを使用している。
計算能力の要件を低く保ちながら,本手法がいくつかの事例において性能改善につながることを示す。
論文 参考訳(メタデータ) (2023-12-21T14:26:57Z) - Interpretability from a new lens: Integrating Stratification and Domain
knowledge for Biomedical Applications [0.0]
本稿では, バイオメディカル問題データセットの k-fold cross-validation (CV) への階層化のための新しい計算手法を提案する。
このアプローチはモデルの安定性を改善し、信頼を確立し、トレーニングされたIMLモデルによって生成された結果の説明を提供する。
論文 参考訳(メタデータ) (2023-03-15T12:02:02Z) - Biologically-informed deep learning models for cancer: fundamental
trends for encoding and interpreting oncology data [0.0]
本稿では,癌生物学における推論を支援するために用いられる深層学習(DL)モデルに着目した構造化文献解析を行う。
この研究は、既存のモデルが、先行知識、生物学的妥当性、解釈可能性とのより良い対話の必要性にどのように対処するかに焦点を当てている。
論文 参考訳(メタデータ) (2022-07-02T12:11:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。