論文の概要: Enhancing Fairness in Autoencoders for Node-Level Graph Anomaly Detection
- arxiv url: http://arxiv.org/abs/2508.10785v1
- Date: Thu, 14 Aug 2025 16:12:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-15 22:24:48.401677
- Title: Enhancing Fairness in Autoencoders for Node-Level Graph Anomaly Detection
- Title(参考訳): ノードレベルグラフ異常検出のためのオートエンコーダの公平性向上
- Authors: Shouju Wang, Yuchen Song, Sheng'en Li, Dongmian Zou,
- Abstract要約: グラフ異常検出(GAD)は、様々な領域でますます重要になっている。
しかし、GADの公平性に関する考察はいまだに過小評価されている。
我々は,GAD性能を維持しながらバイアスを軽減するフレームワークであるtextbfDistextbfEntangled textbfCounterfactual textbfAdversarial textbfFair (DECAF)-GADを提案する。
- 参考スコア(独自算出の注目度): 3.487370856323828
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph anomaly detection (GAD) has become an increasingly important task across various domains. With the rapid development of graph neural networks (GNNs), GAD methods have achieved significant performance improvements. However, fairness considerations in GAD remain largely underexplored. Indeed, GNN-based GAD models can inherit and amplify biases present in training data, potentially leading to unfair outcomes. While existing efforts have focused on developing fair GNNs, most approaches target node classification tasks, where models often rely on simple layer architectures rather than autoencoder-based structures, which are the most widely used architecturs for anomaly detection. To address fairness in autoencoder-based GAD models, we propose \textbf{D}is\textbf{E}ntangled \textbf{C}ounterfactual \textbf{A}dversarial \textbf{F}air (DECAF)-GAD, a framework that alleviates bias while preserving GAD performance. Specifically, we introduce a structural causal model (SCM) to disentangle sensitive attributes from learned representations. Based on this causal framework, we formulate a specialized autoencoder architecture along with a fairness-guided loss function. Through extensive experiments on both synthetic and real-world datasets, we demonstrate that DECAF-GAD not only achieves competitive anomaly detection performance but also significantly enhances fairness metrics compared to baseline GAD methods. Our code is available at https://github.com/Tlhey/decaf_code.
- Abstract(参考訳): グラフ異常検出(GAD)は、様々な領域でますます重要になっている。
グラフニューラルネットワーク(GNN)の急速な開発により、GAD法は大幅な性能向上を実現している。
しかし、GADの公平性に関する考察はいまだに過小評価されている。
実際、GNNベースのGADモデルは、トレーニングデータに存在するバイアスを継承し、増幅し、不公平な結果をもたらす可能性がある。
既存の取り組みは公正なGNNの開発に重点を置いているが、ほとんどのアプローチはノード分類タスクをターゲットにしている。
オートエンコーダに基づくGADモデルにおける公平性に対処するため、GAD性能を保ちながらバイアスを緩和するフレームワークである、DECAF-GAD のフレームワークである \textbf{D}is\textbf{E}ntangled \textbf{C}ounterfactual \textbf{A}dversarial \textbf{F}air を提案する。
具体的には、学習した表現からセンシティブな属性をアンタングルする構造因果モデル(SCM)を導入する。
この因果的枠組みに基づいて、フェアネス誘導損失関数とともに、特殊オートエンコーダアーキテクチャを定式化する。
合成および実世界の両方のデータセットに関する広範な実験を通して、DECAF-GADは競合する異常検出性能を達成するだけでなく、ベースラインGAD法と比較して公正度を著しく向上することを示した。
私たちのコードはhttps://github.com/Tlhey/decaf_code.comから入手可能です。
関連論文リスト
- Graph Neural Networks Powered by Encoder Embedding for Improved Node Learning [17.31465642587528]
グラフニューラルネットワーク(GNN)は、幅広いノードレベルのグラフ学習タスクのための強力なフレームワークとして登場した。
本稿では,1ホットグラフエンコーダ埋め込み (GEE) という統計的手法を用いて,高品質な初期ノード特徴を生成する。
本研究では,教師なし環境と教師なし環境の両方にまたがる広範囲なシミュレーションと実世界の実験を通して,その効果を実証する。
論文 参考訳(メタデータ) (2025-07-15T21:01:54Z) - Disentangling Masked Autoencoders for Unsupervised Domain Generalization [57.56744870106124]
教師なしの領域一般化は急速に注目されているが、まだ十分に研究されていない。
Disentangled Masked Auto (DisMAE) は、本質的な特徴を忠実に示す不整合表現を発見することを目的としている。
DisMAEは、セマンティックで軽量な変分エンコーダを備えた非対称なデュアルブランチアーキテクチャを共同で訓練する。
論文 参考訳(メタデータ) (2024-07-10T11:11:36Z) - Enhancing Fairness in Unsupervised Graph Anomaly Detection through Disentanglement [33.565252991113766]
グラフ異常検出(GAD)は、金融詐欺検出から偽ニュース検出まで、さまざまなアプリケーションにおいてますます重要になっている。
現在のGAD法は主に公平性の問題を見落としており、特定の人口集団に対して差別的な決定が下される可能性がある。
DeFENDという属性グラフ上に,DisEntangle-based FairnEss-aware aNomaly Detectionフレームワークを考案した。
実世界のデータセットに対する実証的な評価から、DEFENDはGADにおいて効果的に機能し、最先端のベースラインと比較して公正性を著しく向上することが明らかとなった。
論文 参考訳(メタデータ) (2024-06-03T04:48:45Z) - Chasing Fairness in Graphs: A GNN Architecture Perspective [73.43111851492593]
グラフニューラルネットワーク(GNN)の統一最適化フレームワーク内で設計されたtextsfFair textsfMessage textsfPassing(FMP)を提案する。
FMPでは、アグリゲーションがまず隣人の情報を活用するために採用され、バイアス軽減ステップにより、人口集団ノードのプレゼンテーションセンタが明示的に統合される。
ノード分類タスクの実験により、提案されたFMPは、実世界の3つのデータセットの公平性と正確性の観点から、いくつかのベースラインを上回っていることが示された。
論文 参考訳(メタデータ) (2023-12-19T18:00:15Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAEはグラフオートエンコーダフレームワークで、GNNの転送性と安定性を活用して、再トレーニングなしに効率的なネットワークアライメントを実現する。
実験の結果、T-GAEは最先端の最適化手法と最高のGNN手法を最大38.7%、50.8%で上回っていることがわかった。
論文 参考訳(メタデータ) (2023-10-05T02:58:29Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
グラフニューラルネットワーク(GNN)の大規模グラフトレーニングは、非常に難しい問題である
本稿では,既存の問題に対処するため,EnGCNという新たなアンサンブルトレーニング手法を提案する。
提案手法は,大規模データセット上でのSOTA(State-of-the-art)の性能向上を実現している。
論文 参考訳(メタデータ) (2022-10-14T03:43:05Z) - MGDCF: Distance Learning via Markov Graph Diffusion for Neural
Collaborative Filtering [96.65234340724237]
現状のGNNベースCFモデルとコンテキスト符号化に基づく従来の1層NRLモデルとの等価性を示す。
マルコフグラフ拡散協調フィルタ (MGDCF) を用いて, 最先端のGNNベースCFモデルを一般化する。
論文 参考訳(メタデータ) (2022-04-05T17:24:32Z) - Black-box Node Injection Attack for Graph Neural Networks [29.88729779937473]
被害者のGNNモデルを回避するためにノードを注入する可能性について検討する。
具体的には,グラフ強化学習フレームワークGA2Cを提案する。
本稿では,既存の最先端手法よりもGA2Cの方が優れた性能を示す。
論文 参考訳(メタデータ) (2022-02-18T19:17:43Z) - Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive
Benchmark Study [100.27567794045045]
ディープグラフニューラルネットワーク(GNN)のトレーニングは、非常に難しい。
我々は、深層GNNの「トリック」を評価するための最初の公正かつ再現可能なベンチマークを示す。
論文 参考訳(メタデータ) (2021-08-24T05:00:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。