論文の概要: Nested Operator Inference for Adaptive Data-Driven Learning of Reduced-order Models
- arxiv url: http://arxiv.org/abs/2508.11542v1
- Date: Fri, 15 Aug 2025 15:38:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-18 14:51:24.131857
- Title: Nested Operator Inference for Adaptive Data-Driven Learning of Reduced-order Models
- Title(参考訳): 低次モデルの適応型データ駆動学習のためのネステッド演算子推論
- Authors: Nicole Aretz, Karen Willcox,
- Abstract要約: データ駆動型ネスト型演算子推論(OpInf)を用いて,物理インフォームド・リダクションモデルの学習を行う。
ネストしたOpInfが標準のOpInfの4倍の誤差を達成し, 立方体熱伝導問題に対するアルゴリズムの性能を実証した。
- 参考スコア(独自算出の注目度): 0.2302001830524133
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a data-driven, nested Operator Inference (OpInf) approach for learning physics-informed reduced-order models (ROMs) from snapshot data of high-dimensional dynamical systems. The approach exploits the inherent hierarchy within the reduced space to iteratively construct initial guesses for the OpInf learning problem that prioritize the interactions of the dominant modes. The initial guess computed for any target reduced dimension corresponds to a ROM with provably smaller or equal snapshot reconstruction error than with standard OpInf. Moreover, our nested OpInf algorithm can be warm-started from previously learned models, enabling versatile application scenarios involving dynamic basis and model form updates. We demonstrate the performance of our algorithm on a cubic heat conduction problem, with nested OpInf achieving a four times smaller error than standard OpInf at a comparable offline time. Further, we apply nested OpInf to a large-scale, parameterized model of the Greenland ice sheet where, despite model form approximation errors, it learns a ROM with, on average, 3% error and computational speed-up factor above 19,000.
- Abstract(参考訳): 本稿では,高次元力学系のスナップショットデータから物理インフォームド・リダクション・モデル(ROM)を学習するためのデータ駆動型ネスト型演算子推論(OpInf)手法を提案する。
このアプローチは、縮小された空間内の固有の階層を利用して、支配的なモードの相互作用を優先するOpInf学習問題の初期推測を反復的に構築する。
対象の縮小次元に対して計算された初期推定は、標準のOpInfよりも確実に小さいまたは等しいスナップショット再構成誤差を持つROMに対応する。
さらに、ネストしたOpsInfアルゴリズムは、以前に学習したモデルからウォームスタートすることができ、動的ベースとモデルフォームの更新を含む汎用的なアプリケーションシナリオを可能にします。
ネストしたOpInfは標準のOpInfの4倍の誤差を同等のオフライン時間で達成する。
さらに,ネストしたOpInfをグリーンランド氷床の大規模パラメータ化モデルに適用し,モデル形状の近似誤差にもかかわらず平均3%の誤差と計算速度を19,000以上で学習する。
関連論文リスト
- SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - Reducing Spatial Discretization Error on Coarse CFD Simulations Using an OpenFOAM-Embedded Deep Learning Framework [0.7223509567556214]
本研究では,深層学習を用いたシミュレーションの品質向上により,流体力学問題の空間的離散化誤差を低減する手法を提案する。
我々は、粗いグリッドの離散化に投射した後、細粒度のデータでモデルをフィードする。
我々は、セル中心からフェイス値への速度を補間するフィードフォワードニューラルネットワークにより、対流項のデフォルトの差分スキームを置換し、ダウンサンプリングされた微細グリッドデータをよく近似する速度を生成する。
論文 参考訳(メタデータ) (2024-05-13T02:59:50Z) - FMint: Bridging Human Designed and Data Pretrained Models for Differential Equation Foundation Model [5.748690310135373]
我々は、人間設計モデルとデータ駆動モデルとのギャップを埋めるために、textbfFMintという新しいマルチモーダル基盤モデルを提案する。
FMintは、インコンテキスト学習を備えたデコーダのみのトランスフォーマーアーキテクチャに基づいて、数値データとテキストデータの両方を用いて、普遍的なエラー訂正スキームを学習する。
本研究は,従来の数値解法と比較して,精度と効率の両面から提案モデルの有効性を実証するものである。
論文 参考訳(メタデータ) (2024-04-23T02:36:47Z) - A DeepONet multi-fidelity approach for residual learning in reduced
order modeling [0.0]
本稿では,多面的視点とDeepONetsを利用して,縮小順序モデルの精度を高める新しい手法を提案する。
モデル削減を機械学習残差学習と組み合わせて、上記の誤りをニューラルネットワークで学習し、新しい予測のために推論することを提案する。
論文 参考訳(メタデータ) (2023-02-24T15:15:07Z) - Score-based Diffusion Models in Function Space [137.70916238028306]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
この研究は、関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)と呼ばれる数学的に厳密なフレームワークを導入する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。