論文の概要: Unified Conformalized Multiple Testing with Full Data Efficiency
- arxiv url: http://arxiv.org/abs/2508.12085v1
- Date: Sat, 16 Aug 2025 15:45:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-19 14:49:10.558083
- Title: Unified Conformalized Multiple Testing with Full Data Efficiency
- Title(参考訳): 完全データ効率を伴う統一型コンフォーマル化多重テスト
- Authors: Yuyang Huo, Xiaoyang Wu, Changliang Zou, Haojie Ren,
- Abstract要約: 我々はデータ利用を中心に置く統一的なフレームワークを提案する。
利用可能なすべてのデータ-ヌル、代替品、ラベルなしコンストラクションスコアを使用し、完全な置換戦略を通じてp値のキャリブレーションを行う。
- 参考スコア(独自算出の注目度): 2.156170153103442
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conformalized multiple testing offers a model-free way to control predictive uncertainty in decision-making. Existing methods typically use only part of the available data to build score functions tailored to specific settings. We propose a unified framework that puts data utilization at the center: it uses all available data-null, alternative, and unlabeled-to construct scores and calibrate p-values through a full permutation strategy. This unified use of all available data significantly improves power by enhancing non-conformity score quality and maximizing calibration set size while rigorously controlling the false discovery rate. Crucially, our framework provides a systematic design principle for conformal testing and enables automatic selection of the best conformal procedure among candidates without extra data splitting. Extensive numerical experiments demonstrate that our enhanced methods deliver superior efficiency and adaptability across diverse scenarios.
- Abstract(参考訳): コンフォーマル化された多重テストは、意思決定における予測の不確実性を制御するモデルのない方法を提供する。
既存のメソッドは通常、利用可能なデータの一部だけを使用して、特定の設定に合わせてスコア関数を構築する。
本稿では,データ利用を中心とする統一的なフレームワークを提案する。全ての利用可能なデータ・ヌル,代替品,ラベル付けされていないものを使ってスコアを構築し,完全な置換戦略によってp値のキャリブレーションを行う。
この全利用可能なデータの統一利用は、偽発見率を厳格に制御しつつ、非整合スコアの品質を高め、校正セットサイズを最大化することにより、電力を著しく向上させる。
重要な点として、我々のフレームワークはコンホメーションテストのための体系的な設計原則を提供し、余分なデータ分割なしに候補間で最適なコンホメーション手順を自動選択することを可能にする。
大規模な数値実験により、拡張された手法は様々なシナリオにおいて優れた効率と適応性をもたらすことが示された。
関連論文リスト
- Optimized Conformal Selection: Powerful Selective Inference After Conformity Score Optimization [4.984656106595651]
本稿では、フレキシブルなデータ駆動モデル最適化後に有効な統計的テスト(選択)を可能にするOptCSを提案する。
我々は,データ再利用が十分であるにもかかわらず,OptCSが正則なp-値を構成する一般的な条件を紹介する。
モデルごとに異なる最適化を行うFDR制御手順を3つ提案する。
論文 参考訳(メタデータ) (2024-11-27T01:40:50Z) - A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
実世界のデータセットは、しばしば冗長でノイズの多いデータを含み、トレーニング効率とモデルパフォーマンスに悪影響を及ぼす。
データ選択は、データセット全体から最も代表的なサンプルを特定することを約束している。
より堅牢で一般化可能なサンプル選択にマルチモーダル情報を活用するCLIPを利用した新しいデータ選択フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-15T03:00:58Z) - Optimal Baseline Corrections for Off-Policy Contextual Bandits [61.740094604552475]
オンライン報酬指標の偏りのないオフライン推定を最適化する意思決定ポリシーを学習することを目指している。
学習シナリオにおける同値性に基づく単一のフレームワークを提案する。
我々のフレームワークは、分散最適非バイアス推定器の特徴付けを可能にし、それに対する閉形式解を提供する。
論文 参考訳(メタデータ) (2024-05-09T12:52:22Z) - Adaptive Selection of the Optimal Strategy to Improve Precision and
Power in Randomized Trials [2.048226951354646]
精度を最大化するために、どの変数とどの形式で調整アプローチを選択するかを示す。
このアプローチは、(nullの下で)Type-Iエラー制御を維持し、精度を大幅に向上させる。
実データに適用すると、全体およびサブグループ内で有意義な効率改善が見られる。
論文 参考訳(メタデータ) (2022-10-31T16:25:38Z) - Joint Adaptive Graph and Structured Sparsity Regularization for
Unsupervised Feature Selection [6.41804410246642]
本稿では,共同適応グラフと構造付き空間正規化unsupervised feature selection (JASFS)法を提案する。
最適な機能のサブセットがグループで選択され、選択された機能の数が自動的に決定される。
8つのベンチマーク実験の結果,提案手法の有効性と有効性を示した。
論文 参考訳(メタデータ) (2020-10-09T08:17:04Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z) - Outlier Detection Ensemble with Embedded Feature Selection [42.8338013000469]
組込み特徴選択(ODEFS)を用いた外乱検出アンサンブルフレームワークを提案する。
各ランダムなサブサンプリングベースの学習コンポーネントに対して、ODEFSは、特徴選択と外れ値検出をペアのランキング式に統一する。
我々は、特徴選択と例選択を同時に最適化するために閾値付き自己評価学習を採用する。
論文 参考訳(メタデータ) (2020-01-15T13:14:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。