論文の概要: A Robust Cross-Domain IDS using BiGRU-LSTM-Attention for Medical and Industrial IoT Security
- arxiv url: http://arxiv.org/abs/2508.12470v1
- Date: Sun, 17 Aug 2025 18:50:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-19 14:49:10.786586
- Title: A Robust Cross-Domain IDS using BiGRU-LSTM-Attention for Medical and Industrial IoT Security
- Title(参考訳): BiGRU-LSTM-Attention を用いた医療・産業用IoTセキュリティ用ロバストクロスドメインIDS
- Authors: Afrah Gueriani, Hamza Kheddar, Ahmed Cherif Mazari, Mohamed Chahine Ghanem,
- Abstract要約: 本稿では,BiGAT-IDと呼ばれる新しいトランスフォーマーを用いた侵入検知システムについて紹介する。
BiGAT-IDは、双方向リカレントゲートユニットBiGRU、長期記憶LSTMネットワーク、マルチヘッドアテンションMHAを組み合わせたハイブリッドモデルである。
このモデルは例外的な実行効率を示し、IoMTではインスタンス毎に0.0002秒、IIoTシナリオでは0.0001秒の推論時間である。
- 参考スコア(独自算出の注目度): 0.21427777919040417
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increased Internet of Medical Things IoMT and the Industrial Internet of Things IIoT interconnectivity has introduced complex cybersecurity challenges, exposing sensitive data, patient safety, and industrial operations to advanced cyber threats. To mitigate these risks, this paper introduces a novel transformer-based intrusion detection system IDS, termed BiGAT-ID a hybrid model that combines bidirectional gated recurrent units BiGRU, long short-term memory LSTM networks, and multi-head attention MHA. The proposed architecture is designed to effectively capture bidirectional temporal dependencies, model sequential patterns, and enhance contextual feature representation. Extensive experiments on two benchmark datasets, CICIoMT2024 medical IoT and EdgeIIoTset industrial IoT demonstrate the model's cross-domain robustness, achieving detection accuracies of 99.13 percent and 99.34 percent, respectively. Additionally, the model exhibits exceptional runtime efficiency, with inference times as low as 0.0002 seconds per instance in IoMT and 0.0001 seconds in IIoT scenarios. Coupled with a low false positive rate, BiGAT-ID proves to be a reliable and efficient IDS for deployment in real-world heterogeneous IoT environments
- Abstract(参考訳): Internet of Medical Things IoMTとIndustrial Internet of Things IIoTコネクティビティは、複雑なサイバーセキュリティの課題を導入し、センシティブなデータ、患者の安全、および先進的なサイバー脅威に対する産業的操作を露呈した。
これらのリスクを軽減するために, 双方向ゲート再帰ユニットBiGRU, 長期記憶LSTMネットワーク, マルチヘッドアテンションMHAを組み合わせたハイブリッドモデルBiGAT-IDを提案する。
提案アーキテクチャは、双方向の時間的依存関係を効果的に把握し、逐次パターンをモデル化し、文脈的特徴表現を強化するように設計されている。
CICIoMT2024メディカルIoTとEdgeIIoTsetインダストリアルIoTの2つのベンチマークデータセットに対する大規模な実験は、モデルのクロスドメインロバスト性を示し、それぞれ99.13パーセントと99.34パーセントの検出精度を達成した。
さらに、このモデルは例外的な実行効率を示し、IoMTではインスタンス毎に0.0002秒、IIoTシナリオでは0.0001秒の推論時間である。
偽陽性率の低いBiGAT-IDと組み合わせることで、実世界の異種IoT環境へのデプロイにおいて信頼性が高く効率的なIDSであることが証明される
関連論文リスト
- LSM-2: Learning from Incomplete Wearable Sensor Data [65.58595667477505]
本稿では,Adaptive and Inherited Masking (AIM)を用いた第2世代Large Sensor Model (LSM-2)を紹介する。
AIMは明示的な計算を必要とせず、不完全なデータから直接堅牢な表現を学習する。
AIMを用いた LSM-2 は, 分類, 回帰, 生成モデルなど, 多様なタスクにまたがる最高の性能を実現する。
論文 参考訳(メタデータ) (2025-06-05T17:57:11Z) - Hybrid Machine Learning Models for Intrusion Detection in IoT: Leveraging a Real-World IoT Dataset [0.0]
これらの脅威を緩和するためには、侵入検知システム(IDS)が不可欠である。
機械学習(ML)の最近の進歩は、改善のための有望な道を提供する。
本研究は、いくつかのスタンドアロンMLモデルを組み合わせたハイブリッドアプローチを探求する。
論文 参考訳(メタデータ) (2025-02-17T23:41:10Z) - A Conditional Tabular GAN-Enhanced Intrusion Detection System for Rare Attacks in IoT Networks [1.1970409518725493]
モノのインターネット(IoT)ネットワークは、6G技術によって強化され、さまざまな産業に変化をもたらしている。
彼らの普及は、特に稀だが潜在的に破壊的なサイバー攻撃を検出する際に、重大なセキュリティリスクをもたらす。
従来のIDSは、IoTデータの深刻なクラス不均衡により、まれな攻撃を検出するのに苦労することが多い。
論文 参考訳(メタデータ) (2025-02-09T21:13:11Z) - MDHP-Net: Detecting an Emerging Time-exciting Threat in IVN [42.74889568823579]
我々は車載ネットワーク(IVN)に対する新たな時間的脅威モデルを特定する。
これらの攻撃は、タイムエキサイティングな効果を示す悪意のあるメッセージを注入し、徐々にネットワークトラフィックを操作して車両の動作を妨害し、安全クリティカルな機能を損なう。
時間的脅威を検出するため,MDHP-Netを導入し,Multi-Dimentional Hawkes Process(MDHP)と時間的・メッセージ的特徴抽出構造を利用した。
論文 参考訳(メタデータ) (2024-11-15T15:05:01Z) - Efficient Intrusion Detection: Combining $χ^2$ Feature Selection with CNN-BiLSTM on the UNSW-NB15 Dataset [2.239394800147746]
侵入検知システム(IDS)は、従来のコンピュータシステムにおけるサイバー攻撃の検出と防止に重要な役割を果たしてきた。
Internet of Things(IoT)デバイスで利用可能な限られた計算リソースは、従来のコンピューティングベースのIDSをデプロイする上での課題である。
本稿では、軽量畳み込みニューラルネットワーク(CNN)と双方向長短期記憶(BiLSTM)を組み合わせた効果的なIDSモデルを提案する。
論文 参考訳(メタデータ) (2024-07-20T17:41:16Z) - Enhancing IoT Security with CNN and LSTM-Based Intrusion Detection Systems [0.23408308015481666]
提案モデルは,畳み込みニューラルネットワーク(CNN)と長短期記憶(LSTM)ディープラーニング(DL)モデルを組み合わせて構成する。
この融合により、IoTトラフィックをバイナリカテゴリ、良性、悪意のあるアクティビティに検出し、分類することが可能になる。
提案モデルの精度は98.42%,最小損失は0.0275である。
論文 参考訳(メタデータ) (2024-05-28T22:12:15Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Constrained Twin Variational Auto-Encoder for Intrusion Detection in IoT
Systems [30.16714420093091]
侵入検知システム(IDS)は、悪意のある攻撃から何十億ものIoTデバイスを保護する上で重要な役割を果たす。
本稿では,CTVAE(Constrained Twin Variational Auto-Encoder)と呼ばれる新しいディープニューラルネットワーク/アーキテクチャを提案する。
CTVAEは、最先端の機械学習および表現学習方法と比較して、精度と検出攻撃におけるFscoreの約1%を向上することができる。
論文 参考訳(メタデータ) (2023-12-05T04:42:04Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
本稿では,脳波に基づく運動画像(MI)分類のための新しい畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
提案したCNNモデル、すなわちEEG-Inceptionは、Inception-Timeネットワークのバックボーン上に構築されている。
提案するネットワークは、生のEEG信号を入力とし、複雑なEEG信号前処理を必要としないため、エンドツーエンドの分類である。
論文 参考訳(メタデータ) (2021-01-24T19:03:10Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。