論文の概要: AdaptiveAE: An Adaptive Exposure Strategy for HDR Capturing in Dynamic Scenes
- arxiv url: http://arxiv.org/abs/2508.13503v1
- Date: Tue, 19 Aug 2025 04:31:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-20 15:36:31.792608
- Title: AdaptiveAE: An Adaptive Exposure Strategy for HDR Capturing in Dynamic Scenes
- Title(参考訳): AdaptiveAE:動的シーンにおけるHDRキャプチャのための適応的露光戦略
- Authors: Tianyi Xu, Fan Zhang, Boxin Shi, Tianfan Xue, Yujin Wang,
- Abstract要約: シャッタースピードとISOのバランスは、高品質なHDRを実現するために不可欠である。
既存の方法はしばしばシャッター速度とISOの間の複雑な相互作用を見落としている。
本稿では,シャッター速度とISOの組み合わせの選択を最適化する強化学習に基づくAdaptiveAEを提案する。
- 参考スコア(独自算出の注目度): 45.67670989936219
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mainstream high dynamic range imaging techniques typically rely on fusing multiple images captured with different exposure setups (shutter speed and ISO). A good balance between shutter speed and ISO is crucial for achieving high-quality HDR, as high ISO values introduce significant noise, while long shutter speeds can lead to noticeable motion blur. However, existing methods often overlook the complex interaction between shutter speed and ISO and fail to account for motion blur effects in dynamic scenes. In this work, we propose AdaptiveAE, a reinforcement learning-based method that optimizes the selection of shutter speed and ISO combinations to maximize HDR reconstruction quality in dynamic environments. AdaptiveAE integrates an image synthesis pipeline that incorporates motion blur and noise simulation into our training procedure, leveraging semantic information and exposure histograms. It can adaptively select optimal ISO and shutter speed sequences based on a user-defined exposure time budget, and find a better exposure schedule than traditional solutions. Experimental results across multiple datasets demonstrate that it achieves the state-of-the-art performance.
- Abstract(参考訳): 主流の高ダイナミックレンジイメージング技術は、通常、異なる露光装置(シャッタースピードとISO)で撮影された複数の画像の融合に依存している。
シャッター速度とISOのバランスは、高いISO値が大きなノイズをもたらし、長いシャッター速度が顕著な動きのぼけを引き起こすため、高品質なHDRを達成するために不可欠である。
しかし、既存の手法はしばしばシャッタースピードとISOの複雑な相互作用を見落とし、ダイナミックシーンにおける動きのぼかし効果を考慮できない。
本研究では,動的環境におけるHDR再構成品質を最大化するために,シャッター速度とISOの組み合わせの選択を最適化する強化学習に基づくAdaptiveAEを提案する。
AdaptiveAEは,動作のぼかしとノイズシミュレーションをトレーニング手順に組み込んだ画像合成パイプラインを統合し,セマンティック情報と露出ヒストグラムを活用する。
ユーザが定義した露光時間予算に基づいて最適なISOとシャッタースピードシーケンスを適応的に選択でき、従来のソリューションよりも優れた露光スケジュールを見つけることができる。
複数のデータセットにまたがる実験結果から、最先端のパフォーマンスを実現することが示されている。
関連論文リスト
- EBAD-Gaussian: Event-driven Bundle Adjusted Deblur Gaussian Splatting [21.46091843175779]
イベント駆動バンドル調整デブルガウススメッティング(EBAD-Gaussian)
EBAD-Gaussianは、イベントストリームとひどくぼやけた画像から、鋭い3Dガウシアンを再構築する。
合成および実世界のデータセットの実験により、EBAD-Gaussianは高品質な3Dシーンを再構築できることが示された。
論文 参考訳(メタデータ) (2025-04-14T09:17:00Z) - Event-assisted 12-stop HDR Imaging of Dynamic Scene [20.064191181938533]
本稿では,イベントカメラとRGBカメラを備えたデュアルカメラシステムを利用して,ダイナミックシーンのための新しい12ストップHDRイメージング手法を提案する。
イベントカメラは、時間的に密度が高く、ダイナミックレンジの信号を提供し、LDRフレーム間のアライメントを大きな露出差で改善し、動きによって引き起こされるゴーストアーティファクトを減らす。
本手法は,動的シーンにおけるHDRイメージングを12停止まで拡張し,最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-12-19T10:17:50Z) - Exposure Bracketing Is All You Need For A High-Quality Image [50.822601495422916]
マルチ露光画像は、デノイング、デブロアリング、高ダイナミックレンジイメージング、超解像において相補的である。
本研究では,これらの課題を組み合わせ,高品質な画像を得るために露光ブラケット写真を活用することを提案する。
特に時間変調リカレントネットワーク(TMRNet)と自己教師あり適応手法を提案する。
論文 参考訳(メタデータ) (2024-01-01T14:14:35Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
低光画像強調(LLIE)技術は、画像の詳細の保存とコントラストの強化に顕著な進歩をもたらした。
これらのアプローチは、動的ノイズを効率的に緩和し、様々な低照度シナリオを収容する上で、永続的な課題に直面する。
まず,低照度画像の雑音レベルを迅速かつ高精度に推定する方法を提案する。
次に、照明と入力の一般的な制約を満たすために、Learningable Illumination Interpolator (LII) を考案する。
論文 参考訳(メタデータ) (2023-05-17T13:56:48Z) - Recovering Continuous Scene Dynamics from A Single Blurry Image with
Events [58.7185835546638]
インプリシットビデオ関数(IVF)は、同時イベントを伴う単一の動きのぼやけた画像を表現する。
両モードの利点を効果的に活用するために、二重注意変換器を提案する。
提案するネットワークは,限られた参照タイムスタンプの地平線画像の監督のみで訓練される。
論文 参考訳(メタデータ) (2023-04-05T18:44:17Z) - Joint Video Multi-Frame Interpolation and Deblurring under Unknown
Exposure Time [101.91824315554682]
本研究では,より現実的で挑戦的なタスク – 複数フレームのジョイントビデオと,未知の露光時間下での劣化 – を野心的に目標とする。
我々はまず,入力されたぼやけたフレームから露出認識表現を構築するために,教師付きコントラスト学習の変種を採用する。
次に、プログレッシブ露光適応型畳み込みと動き改善による露出と動きの表現に基づいて、映像再構成ネットワークを構築した。
論文 参考訳(メタデータ) (2023-03-27T09:43:42Z) - Learning Spatially Varying Pixel Exposures for Motion Deblurring [49.07867902677453]
本研究では,空間的に異なる画素の露光を利用して動きを損なう新しい手法を提案する。
我々の研究は、未来のコンピュータイメージングにおいて、焦点面センサー-プロセッサが果たすべき役割を説明している。
論文 参考訳(メタデータ) (2022-04-14T23:41:49Z) - An Asynchronous Kalman Filter for Hybrid Event Cameras [13.600773150848543]
イベントカメラはhdrの視覚情報をぼやけることなく捉えるのに理想的だ。
従来のイメージセンサーは、ゆっくりと変化するシーンの絶対強度を効果的に測定するが、高いダイナミックレンジや素早く変化するシーンでは不十分である。
本稿では,ハイダイナミックレンジシナリオのためのイベントベースビデオ再構成パイプラインを提案する。
論文 参考訳(メタデータ) (2020-12-10T11:24:07Z) - Learning an Adaptive Model for Extreme Low-light Raw Image Processing [5.706764509663774]
画質向上のための適応型低照度生画像強調ネットワークを提案する。
提案手法は、最先端の低照度アルゴリズムと比較してノイズレベル推定(NLE)のスコアが低い。
ビデオ処理における潜在的な応用について概説する。
論文 参考訳(メタデータ) (2020-04-22T09:01:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。