論文の概要: Approximate Bayesian Inference via Bitstring Representations
- arxiv url: http://arxiv.org/abs/2508.13598v1
- Date: Tue, 19 Aug 2025 08:08:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-20 15:36:31.836437
- Title: Approximate Bayesian Inference via Bitstring Representations
- Title(参考訳): ビットストリング表現による近似ベイズ推論
- Authors: Aleksanteri Sladek, Martin Trapp, Arno Solin,
- Abstract要約: 本稿では,表現によって生成される量子化された離散パラメータ空間において確率的推論を実行することを提案する。
この研究は、確率計算の離散近似を利用して、スケーラブルで解釈可能な機械学習を前進させる。
- 参考スコア(独自算出の注目度): 15.754246455963907
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The machine learning community has recently put effort into quantized or low-precision arithmetics to scale large models. This paper proposes performing probabilistic inference in the quantized, discrete parameter space created by these representations, effectively enabling us to learn a continuous distribution using discrete parameters. We consider both 2D densities and quantized neural networks, where we introduce a tractable learning approach using probabilistic circuits. This method offers a scalable solution to manage complex distributions and provides clear insights into model behavior. We validate our approach with various models, demonstrating inference efficiency without sacrificing accuracy. This work advances scalable, interpretable machine learning by utilizing discrete approximations for probabilistic computations.
- Abstract(参考訳): 機械学習コミュニティは、最近、大規模なモデルをスケールするための量子化または低精度の算術に取り組みました。
本稿では,これらの表現によって生成される量子化された離散パラメータ空間において確率的推論を行い,離散パラメータを用いた連続分布の学習を効果的に行うことを提案する。
我々は2次元密度と量子化ニューラルネットワークの両方を考慮し、確率回路を用いた抽出可能な学習手法を導入する。
この方法は、複雑な分布を管理するスケーラブルなソリューションを提供し、モデルの振る舞いに対する明確な洞察を提供する。
提案手法を様々なモデルで検証し,精度を犠牲にすることなく推論効率を示す。
この研究は、確率計算の離散近似を利用して、スケーラブルで解釈可能な機械学習を前進させる。
関連論文リスト
- Overcoming Dimensional Factorization Limits in Discrete Diffusion Models through Quantum Joint Distribution Learning [79.65014491424151]
量子離散化拡散確率モデル(QD3PM)を提案する。
これは、指数関数的に大きなヒルベルト空間における拡散と denoising を通じて合同確率学習を可能にする。
本稿では,共同分布学習における量子的優位性を生かして,生成モデルの新たな理論的パラダイムを確立する。
論文 参考訳(メタデータ) (2025-05-08T11:48:21Z) - Efficient Fairness-Performance Pareto Front Computation [51.558848491038916]
最適公正表現はいくつかの有用な構造特性を持つことを示す。
そこで,これらの近似問題は,凹凸プログラミング法により効率的に解けることを示す。
論文 参考訳(メタデータ) (2024-09-26T08:46:48Z) - Implicit Variational Inference for High-Dimensional Posteriors [7.924706533725115]
変分推論において、ベイズモデルの利点は、真の後続分布を正確に捉えることに依存する。
複雑な多重モーダルおよび相関後部を近似するのに適した暗黙分布を特定するニューラルサンプリング手法を提案する。
提案手法では,ニューラルネットワークを局所的に線形化することにより,暗黙分布を用いた近似推論の新たなバウンダリを導入する。
論文 参考訳(メタデータ) (2023-10-10T14:06:56Z) - Kernel Density Matrices for Probabilistic Deep Learning [8.486487001779416]
量子力学において、密度行列は量子系の状態を記述する最も一般的な方法である。
本稿では,確率的深層学習,カーネル密度行列に対する新しいアプローチを提案する。
これは連続確率変数と離散確率変数の両方の結合確率分布を表現するためのより単純で効果的なメカニズムを提供する。
論文 参考訳(メタデータ) (2023-05-26T12:59:58Z) - Learning Structured Gaussians to Approximate Deep Ensembles [10.055143995729415]
本稿では,スパース構造多変量ガウシアンを用いて,高密度画像予測タスクのための閉形式近似器を提案する。
正規分布における予測の不確かさと構造的相関を、サンプリング単独で暗黙的にではなく、明示的に捉える。
単分子深度推定におけるアプローチの利点を実証し,本手法の利点が同等の定量的性能で得られることを示す。
論文 参考訳(メタデータ) (2022-03-29T12:34:43Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
まず確率分布をモデル化し,そのモデルからサンプリングする。
これらのモデルでは, 少数の評価値を用いて, 高精度に多数の密度を近似することが可能であることが示され, それらのモデルから効果的にサンプルする簡単なアルゴリズムが提示される。
論文 参考訳(メタデータ) (2021-10-20T12:25:22Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Learned Factor Graphs for Inference from Stationary Time Sequences [107.63351413549992]
定常時間列のためのモデルベースアルゴリズムとデータ駆動型MLツールを組み合わせたフレームワークを提案する。
ニューラルネットワークは、時系列の分布を記述する因子グラフの特定のコンポーネントを別々に学習するために開発された。
本稿では,学習された定常因子グラフに基づく推論アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-05T07:06:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。