論文の概要: From AI for Science to Agentic Science: A Survey on Autonomous Scientific Discovery
- arxiv url: http://arxiv.org/abs/2508.14111v1
- Date: Mon, 18 Aug 2025 05:25:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-21 16:52:41.194997
- Title: From AI for Science to Agentic Science: A Survey on Autonomous Scientific Discovery
- Title(参考訳): AI for Scienceからエージェントサイエンスへ:自律科学的発見に関する調査
- Authors: Jiaqi Wei, Yuejin Yang, Xiang Zhang, Yuhan Chen, Xiang Zhuang, Zhangyang Gao, Dongzhan Zhou, Guangshuai Wang, Zhiqiang Gao, Juntai Cao, Zijie Qiu, Xuming He, Qiang Zhang, Chenyu You, Shuangjia Zheng, Ning Ding, Wanli Ouyang, Nanqing Dong, Yu Cheng, Siqi Sun, Lei Bai, Bowen Zhou,
- Abstract要約: エージェントAIは仮説生成、実験設計、実行、分析、反復的洗練の能力を示す。
この調査は、生命科学、化学、材料科学、物理学にまたがる自律的な科学的発見のドメイン指向のレビューを提供する。
- 参考スコア(独自算出の注目度): 90.64813998433253
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence (AI) is reshaping scientific discovery, evolving from specialized computational tools into autonomous research partners. We position Agentic Science as a pivotal stage within the broader AI for Science paradigm, where AI systems progress from partial assistance to full scientific agency. Enabled by large language models (LLMs), multimodal systems, and integrated research platforms, agentic AI shows capabilities in hypothesis generation, experimental design, execution, analysis, and iterative refinement -- behaviors once regarded as uniquely human. This survey provides a domain-oriented review of autonomous scientific discovery across life sciences, chemistry, materials science, and physics. We unify three previously fragmented perspectives -- process-oriented, autonomy-oriented, and mechanism-oriented -- through a comprehensive framework that connects foundational capabilities, core processes, and domain-specific realizations. Building on this framework, we (i) trace the evolution of AI for Science, (ii) identify five core capabilities underpinning scientific agency, (iii) model discovery as a dynamic four-stage workflow, (iv) review applications across the above domains, and (v) synthesize key challenges and future opportunities. This work establishes a domain-oriented synthesis of autonomous scientific discovery and positions Agentic Science as a structured paradigm for advancing AI-driven research.
- Abstract(参考訳): 人工知能(AI)は、特殊な計算ツールから自律的な研究パートナーへと進化する科学的な発見を形作る。
我々はエージェントサイエンスを、AIシステムが部分的な支援から完全な科学機関へと進む、より広範なAI for Scienceパラダイムにおける重要な段階として位置付ける。
エージェントAIは,大規模な言語モデル(LLM)やマルチモーダルシステム,統合された研究プラットフォームによって実現されている。
この調査は、生命科学、化学、材料科学、物理学にまたがる自律的な科学的発見のドメイン指向のレビューを提供する。
基本機能、コアプロセス、ドメイン固有の実現を結合する包括的なフレームワークを通じて、プロセス指向、自律指向、およびメカニズム指向の3つの以前は断片化された視点を統一します。
このフレームワークの上に構築する、私たちは
i)AI for Scienceの進化を辿る。
二 科学機関を支える五つのコア能力を特定すること。
三 動的四段ワークフローとしてのモデル発見
(四)上記の領域にまたがる申請を審査し、
(v)重要な課題と今後の機会を合成する。
この研究は、自律的な科学的発見のドメイン指向の合成を確立し、エージェントサイエンスをAI駆動研究を進めるための構造化パラダイムとして位置づける。
関連論文リスト
- AI4Research: A Survey of Artificial Intelligence for Scientific Research [55.5452803680643]
我々はAI for Research(AI4Research)に関する総合的な調査を行う。
まず、AI4Researchの5つの主要なタスクを分類する系統分類を導入する。
主要な研究ギャップを特定し、将来有望な方向性を明らかにする。
論文 参考訳(メタデータ) (2025-07-02T17:19:20Z) - From Automation to Autonomy: A Survey on Large Language Models in Scientific Discovery [43.31110556077432]
大規模言語モデル(LLM)は科学的発見のパラダイムシフトを触媒している。
この調査は、この急成長する分野を体系的に分析し、科学におけるLLMの役割の変化とエスカレーション能力に重点を置いている。
論文 参考訳(メタデータ) (2025-05-19T15:41:32Z) - AI-Driven Automation Can Become the Foundation of Next-Era Science of Science Research [58.944125758758936]
科学科学(Science of Science, SoS)は、科学的発見の基礎となるメカニズムを探求する。
人工知能(AI)の出現は、次世代のSoSに変革の機会をもたらす。
我々は、従来の手法よりもAIの利点を概説し、潜在的な制限について議論し、それらを克服するための経路を提案する。
論文 参考訳(メタデータ) (2025-05-17T15:01:33Z) - SciSciGPT: Advancing Human-AI Collaboration in the Science of Science [7.592219145267612]
大規模言語モデル(LLM)とAIエージェントの最近の進歩は、人間とAIのコラボレーションに新たな可能性をもたらしている。
我々はSciSciGPTを紹介した。SciSciGPTはオープンソースのプロトタイプAIコラボレータで、科学の科学をテストベッドとして利用し、LLMを利用した研究ツールの可能性を探る。
論文 参考訳(メタデータ) (2025-04-07T23:19:39Z) - Towards Scientific Discovery with Generative AI: Progress, Opportunities, and Challenges [11.232704182001253]
本稿では、科学的な課題に応用された大規模言語モデルやその他のAI技術の最近の進歩に注目し、科学的な発見のためのAIの現状について考察する。
そして、科学的な発見のためのより包括的なAIシステムの開発に向けた重要な課題と研究の方向性を概説する。
論文 参考訳(メタデータ) (2024-12-16T03:52:20Z) - AIGS: Generating Science from AI-Powered Automated Falsification [17.50867181053229]
本稿では,重要な研究プロセスを代表する役割を担ったマルチエージェントシステムである,フルプロセスAIGSシステムのベビーステップとして,Baby-AIGSを提案する。
3つのタスクの実験では、Baby-AIGSは経験豊富な人間の研究者と同等ではないが、有意義な科学的発見を産み出すことができた。
論文 参考訳(メタデータ) (2024-11-17T13:40:35Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。