論文の概要: Correct-By-Construction: Certified Individual Fairness through Neural Network Training
- arxiv url: http://arxiv.org/abs/2508.15642v1
- Date: Thu, 21 Aug 2025 15:14:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-22 16:26:46.381727
- Title: Correct-By-Construction: Certified Individual Fairness through Neural Network Training
- Title(参考訳): 正しいバイコンストラクション:ニューラルネットワークトレーニングによる個人公正認定
- Authors: Ruihan Zhang, Jun Sun,
- Abstract要約: トレーニングを通して個人的公正を正式に保証する新しい枠組みを提案する。
提案手法の重要な要素は,ランダム化応答機構の利用である。
我々は、このメカニズムがトレーニングプロセスを通して個人の公正性を維持することを正式に証明する。
- 参考スコア(独自算出の注目度): 3.350980549219263
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fairness in machine learning is more important than ever as ethical concerns continue to grow. Individual fairness demands that individuals differing only in sensitive attributes receive the same outcomes. However, commonly used machine learning algorithms often fail to achieve such fairness. To improve individual fairness, various training methods have been developed, such as incorporating fairness constraints as optimisation objectives. While these methods have demonstrated empirical effectiveness, they lack formal guarantees of fairness. Existing approaches that aim to provide fairness guarantees primarily rely on verification techniques, which can sometimes fail to produce definitive results. Moreover, verification alone does not actively enhance individual fairness during training. To address this limitation, we propose a novel framework that formally guarantees individual fairness throughout training. Our approach consists of two parts, i.e., (1) provably fair initialisation that ensures the model starts in a fair state, and (2) a fairness-preserving training algorithm that maintains fairness as the model learns. A key element of our method is the use of randomised response mechanisms, which protect sensitive attributes while maintaining fairness guarantees. We formally prove that this mechanism sustains individual fairness throughout the training process. Experimental evaluations confirm that our approach is effective, i.e., producing models that are empirically fair and accurate. Furthermore, our approach is much more efficient than the alternative approach based on certified training (which requires neural network verification during training).
- Abstract(参考訳): 倫理的懸念が拡大を続ける中、機械学習の公平性はこれまで以上に重要である。
個人の公平性は、敏感な属性だけが異なる個人が同じ結果を受け取ることを要求する。
しかし、一般的に使われている機械学習アルゴリズムは、そのような公平性を達成するのに失敗することが多い。
個別の公正性を改善するため、公正性制約を最適化目的として組み込むなど、様々な訓練方法が開発されている。
これらの手法は経験的効果を示したが、公正性の正式な保証は欠如している。
公正性を保証するための既存のアプローチは主に検証技術に依存しており、決定的な結果が得られない場合もあります。
さらに、検証だけでは、トレーニング中の個人の公正さを積極的に向上させません。
この制限に対処するために、トレーニングを通して個人的公正を正式に保証する新しい枠組みを提案する。
提案手法は,(1)モデルが公正な状態から始めることを確実に保証する公平な初期化と,(2)モデルが学習するときに公平性を維持する公平性保存トレーニングアルゴリズムの2つの部分から構成される。
提案手法の鍵となる要素はランダム化応答機構の利用である。
我々は、このメカニズムがトレーニングプロセスを通して個人の公正性を維持することを正式に証明する。
実験により,本手法が有効であることが確認された。
さらに、我々のアプローチは、認定トレーニング(トレーニング中にニューラルネットワークの検証を必要とする)に基づく代替アプローチよりもはるかに効率的です。
関連論文リスト
- Towards Fairness-Aware Adversarial Learning [13.932705960012846]
フェアネス・アウェア・アドバーサリアル・ラーニング(FAAL)という新しい学習パラダイムを提案する。
提案手法は,異なるカテゴリ間で最悪の分布を求めることを目的としており,高い確率で上界性能が得られることを保証している。
特にFAALは、不公平なロバストモデルを2つのエポックで公平に調整できるが、全体的なクリーンで堅牢なアキュラシーを損なうことはない。
論文 参考訳(メタデータ) (2024-02-27T18:01:59Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
この研究は、DualFairと呼ばれる自己教師型モデルを提示し、学習された表現から性別や人種などのセンシティブな属性をデバイアスすることができる。
我々のモデルは、グループフェアネスと対実フェアネスという2つのフェアネス基準を共同で最適化する。
論文 参考訳(メタデータ) (2023-03-15T07:13:54Z) - Fairness in Matching under Uncertainty [78.39459690570531]
アルゴリズム的な二面市場は、こうした設定における公平性の問題に注意を向けている。
我々は、利益の不確実性を尊重する両面の市場設定において、個々人の公正性の概念を公理化する。
そこで我々は,配当よりも公平なユーティリティ最大化分布を求めるために,線形プログラミングフレームワークを設計する。
論文 参考訳(メタデータ) (2023-02-08T00:30:32Z) - Provable Fairness for Neural Network Models using Formal Verification [10.90121002896312]
本稿では,ニューラルネットワークモデルの特性を検証する形式的手法を用いて,公平性を向上する手法を提案する。
適切なトレーニングによって、AUCスコアの1%未満のコストで、平均65.4%の不公平さを削減できることを示す。
論文 参考訳(メタデータ) (2022-12-16T16:54:37Z) - Practical Approaches for Fair Learning with Multitype and Multivariate
Sensitive Attributes [70.6326967720747]
現実世界に展開された機械学習アルゴリズムが不公平さや意図しない社会的結果をもたらすことはないことを保証することが重要である。
本稿では,カーネルHilbert Spacesの相互共分散演算子上に構築されたフェアネス尺度であるFairCOCCOを紹介する。
実世界のデータセットにおける予測能力と公正性のバランスをとる上で、最先端技術に対する一貫した改善を実証的に示す。
論文 参考訳(メタデータ) (2022-11-11T11:28:46Z) - Improving Robust Fairness via Balance Adversarial Training [51.67643171193376]
対人訓練 (AT) 法は, 対人攻撃に対して有効であるが, 異なるクラス間での精度と頑健さの相違が激しい。
本稿では,頑健な公正性問題に対処するために,BAT(Adversarial Training)を提案する。
論文 参考訳(メタデータ) (2022-09-15T14:44:48Z) - Adaptive Fairness Improvement Based on Causality Analysis [5.827653543633839]
識別ニューラルネットワークが与えられた場合、公平性向上の問題は、その性能を著しく損なうことなく、系統的に差別を減らすことである。
本稿では,因果分析に基づくフェアネス改善手法を適応的に選択する手法を提案する。
我々のアプローチは効果的(すなわち、常に最良の公正性を改善する方法を特定する)で効率的(すなわち平均時間オーバーヘッドが5分)である。
論文 参考訳(メタデータ) (2022-09-15T10:05:31Z) - FETA: Fairness Enforced Verifying, Training, and Predicting Algorithms
for Neural Networks [9.967054059014691]
ニューラルネットワークモデルの個々の公正性を検証し、トレーニングし、保証する問題について検討する。
フェアネスを強制する一般的なアプローチは、フェアネスの概念をモデルのパラメータに関する制約に変換することである。
本研究では,予測時の公正性制約を確実に実施するための逆例誘導後処理手法を開発した。
論文 参考訳(メタデータ) (2022-06-01T15:06:11Z) - Optimising Equal Opportunity Fairness in Model Training [60.0947291284978]
既存のデバイアス法、例えば、敵の訓練や、表現から保護された情報を取り除くことは、バイアスを減らすことが示されている。
2つの新たな学習目標を提案し,2つの分類課題における高い性能を維持しつつ,バイアスの低減に有効であることを示す。
論文 参考訳(メタデータ) (2022-05-05T01:57:58Z) - Towards Equal Opportunity Fairness through Adversarial Learning [64.45845091719002]
逆行訓練は、自然言語処理におけるバイアス緩和の一般的なアプローチである。
本稿では、よりリッチな特徴を生み出すために、ターゲットクラスをインプットとして利用する、対位訓練のための拡張判別器を提案する。
論文 参考訳(メタデータ) (2022-03-12T02:22:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。