論文の概要: Hierarchical Decision-Making for Autonomous Navigation: Integrating Deep Reinforcement Learning and Fuzzy Logic in Four-Wheel Independent Steering and Driving Systems
- arxiv url: http://arxiv.org/abs/2508.16574v1
- Date: Fri, 22 Aug 2025 17:57:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-25 16:42:36.482095
- Title: Hierarchical Decision-Making for Autonomous Navigation: Integrating Deep Reinforcement Learning and Fuzzy Logic in Four-Wheel Independent Steering and Driving Systems
- Title(参考訳): 自律走行のための階層的決定--四輪独立運転システムにおける深部強化学習とファジィ論理の統合
- Authors: Yizhi Wang, Degang Xu, Yongfang Xie, Shuzhong Tan, Xianan Zhou, Peng Chen,
- Abstract要約: 本稿では,4WISDシステムにおける自律ナビゲーションのための階層的意思決定フレームワークを提案する。
提案手法は,高レベルナビゲーションのための深層強化学習とファジィロジックを統合し,タスク性能と物理的実現性の両方を保証する。
- 参考スコア(独自算出の注目度): 19.641592340569577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a hierarchical decision-making framework for autonomous navigation in four-wheel independent steering and driving (4WISD) systems. The proposed approach integrates deep reinforcement learning (DRL) for high-level navigation with fuzzy logic for low-level control to ensure both task performance and physical feasibility. The DRL agent generates global motion commands, while the fuzzy logic controller enforces kinematic constraints to prevent mechanical strain and wheel slippage. Simulation experiments demonstrate that the proposed framework outperforms traditional navigation methods, offering enhanced training efficiency and stability and mitigating erratic behaviors compared to purely DRL-based solutions. Real-world validations further confirm the framework's ability to navigate safely and effectively in dynamic industrial settings. Overall, this work provides a scalable and reliable solution for deploying 4WISD mobile robots in complex, real-world scenarios.
- Abstract(参考訳): 本稿では,四輪独立操舵駆動システム(4WISD)における自律走行のための階層的意思決定フレームワークを提案する。
提案手法は,高レベルナビゲーションのための深層強化学習(DRL)と低レベル制御のためのファジィ論理を統合し,タスク性能と物理的実現性の両方を保証する。
DRLエージェントは、大域的な動作コマンドを生成し、ファジィロジックコントローラは、機械的歪みや車輪すべりを防止するために運動的制約を強制する。
シミュレーション実験により,提案手法は従来のナビゲーション手法よりも優れており,訓練効率と安定性が向上し,純粋なDRLベースのソリューションに比べて不規則な動作が軽減されることが示された。
現実世界の検証は、動的産業環境で安全に効果的にナビゲートできるフレームワークの能力をさらに確認する。
全体として、この作業は4WISDモバイルロボットを複雑な現実世界のシナリオに展開するためのスケーラブルで信頼性の高いソリューションを提供する。
関連論文リスト
- Designing Control Barrier Function via Probabilistic Enumeration for Safe Reinforcement Learning Navigation [55.02966123945644]
本稿では,ニューラルネットワーク検証技術を利用して制御障壁関数(CBF)とポリシー修正機構の設計を行う階層型制御フレームワークを提案する。
提案手法は,安全なCBFベースの制御層を構築するために使用される,安全でない操作領域を特定するための確率的列挙に依存する。
これらの実験は、効率的なナビゲーション動作を維持しながら、安全でない動作を補正する提案手法の能力を実証するものである。
論文 参考訳(メタデータ) (2025-04-30T13:47:25Z) - TeLL-Drive: Enhancing Autonomous Driving with Teacher LLM-Guided Deep Reinforcement Learning [61.33599727106222]
TeLL-Driveは、Teacher LLMを統合して、注意に基づく学生DRLポリシーをガイドするハイブリッドフレームワークである。
自己維持機構はDRLエージェントの探索とこれらの戦略を融合させ、政策収束を加速し、堅牢性を高める。
論文 参考訳(メタデータ) (2025-02-03T14:22:03Z) - Evaluating Robustness of Reinforcement Learning Algorithms for Autonomous Shipping [2.9109581496560044]
本稿では,自律型海運シミュレータにおける内陸水路輸送(IWT)のために実装されたベンチマークディープ強化学習(RL)アルゴリズムのロバスト性について検討する。
モデルのないアプローチはシミュレーターで適切なポリシーを達成でき、訓練中に遭遇したことのないポート環境をナビゲートすることに成功した。
論文 参考訳(メタデータ) (2024-11-07T17:55:07Z) - From Imitation to Exploration: End-to-end Autonomous Driving based on World Model [24.578178308010912]
RAMBLEは、意思決定を駆動するエンド・ツー・エンドの世界モデルベースのRL方式である。
複雑な動的トラフィックシナリオを処理できる。
CARLA Leaderboard 1.0では、ルート完了率の最先端のパフォーマンスを達成し、CARLA Leaderboard 2.0では38のシナリオをすべて完了している。
論文 参考訳(メタデータ) (2024-10-03T06:45:59Z) - Learning Robust Autonomous Navigation and Locomotion for Wheeled-Legged Robots [50.02055068660255]
都市環境のナビゲーションは、ロボットにとってユニークな課題であり、移動とナビゲーションのための革新的なソリューションを必要としている。
本研究は, 適応移動制御, 移動対応ローカルナビゲーション計画, 市内の大規模経路計画を含む, 完全に統合されたシステムを導入する。
モデルフリー強化学習(RL)技術と特権学習を用いて,多目的移動制御系を開発した。
私たちのコントローラーは大規模な都市航法システムに統合され、スイスのチューリッヒとスペインのセビリアで自律的、キロメートル規模の航法ミッションによって検証されます。
論文 参考訳(メタデータ) (2024-05-03T00:29:20Z) - RL + Model-based Control: Using On-demand Optimal Control to Learn Versatile Legged Locomotion [16.800984476447624]
本稿では,モデルに基づく最適制御と強化学習を組み合わせた制御フレームワークを提案する。
我々は、一連の実験を通じて、フレームワークの堅牢性と制御性を検証する。
本フレームワークは,多様な次元を持つロボットに対する制御ポリシーのトレーニングを,無力的に支援する。
論文 参考訳(メタデータ) (2023-05-29T01:33:55Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - Deep Reinforcement Learning Controller for 3D Path-following and
Collision Avoidance by Autonomous Underwater Vehicles [0.0]
自律型水中車両のような複雑なシステムでは、意思決定は簡単ではない。
本稿では,最先端のDeep Reinforcement Learning(DRL)技術を用いた解を提案する。
本研究は,自律走行車システムにおける人間レベルの意思決定に向けた衝突回避と経路追従におけるDRLの実現可能性を示すものである。
論文 参考訳(メタデータ) (2020-06-17T11:54:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。