論文の概要: Deep Reinforcement Learning Controller for 3D Path-following and
Collision Avoidance by Autonomous Underwater Vehicles
- arxiv url: http://arxiv.org/abs/2006.09792v1
- Date: Wed, 17 Jun 2020 11:54:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 21:30:27.690688
- Title: Deep Reinforcement Learning Controller for 3D Path-following and
Collision Avoidance by Autonomous Underwater Vehicles
- Title(参考訳): 自律水中車両の3次元経路追従と衝突回避のための深層強化学習制御
- Authors: Simen Theie Havenstr{\o}m and Adil Rasheed and Omer San
- Abstract要約: 自律型水中車両のような複雑なシステムでは、意思決定は簡単ではない。
本稿では,最先端のDeep Reinforcement Learning(DRL)技術を用いた解を提案する。
本研究は,自律走行車システムにおける人間レベルの意思決定に向けた衝突回避と経路追従におけるDRLの実現可能性を示すものである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Control theory provides engineers with a multitude of tools to design
controllers that manipulate the closed-loop behavior and stability of dynamical
systems. These methods rely heavily on insights about the mathematical model
governing the physical system. However, in complex systems, such as autonomous
underwater vehicles performing the dual objective of path-following and
collision avoidance, decision making becomes non-trivial. We propose a solution
using state-of-the-art Deep Reinforcement Learning (DRL) techniques, to develop
autonomous agents capable of achieving this hybrid objective without having \`a
priori knowledge about the goal or the environment. Our results demonstrate the
viability of DRL in path-following and avoiding collisions toward achieving
human-level decision making in autonomous vehicle systems within extreme
obstacle configurations.
- Abstract(参考訳): 制御理論は、力学系の閉ループ挙動と安定性を操作するコントローラを設計するための多数のツールを提供する。
これらの手法は物理システムを支配する数学的モデルについての洞察に大きく依存している。
しかし、経路追従と衝突回避という2つの目的を果たす自律型水中車両のような複雑なシステムでは、意思決定は簡単ではない。
本稿では,最先端のDeep Reinforcement Learning (DRL) 技術を用いて,目標や環境の事前知識を持たずに,このハイブリッド目的を達成する自律エージェントを開発することを提案する。
本研究は, 道路追従におけるDRLの実現可能性と, 極端障害物条件下での自律走行車システムにおける人間レベルの意思決定に向けた衝突回避効果を示すものである。
関連論文リスト
- Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
ゲームエンジンとDeep Reinforcement Learningの統合の最近の進歩を利用して,水上ナビゲーションのための新しいベンチマーク環境を提案する。
具体的には、最も広く受け入れられているアルゴリズムの一つであるPPOに着目し、先進的なトレーニング手法を提案する。
実験により,これらの成分をうまく組み合わせることで,有望な結果が得られることが示された。
論文 参考訳(メタデータ) (2024-05-30T23:20:23Z) - Variational Autoencoders for exteroceptive perception in reinforcement learning-based collision avoidance [0.0]
Deep Reinforcement Learning (DRL) は有望な制御フレームワークとして登場した。
現在のDRLアルゴリズムは、ほぼ最適ポリシーを見つけるために不均等な計算資源を必要とする。
本稿では,海洋制御システムにおける提案手法の総合的な探索について述べる。
論文 参考訳(メタデータ) (2024-03-31T09:25:28Z) - Convergence of Communications, Control, and Machine Learning for Secure
and Autonomous Vehicle Navigation [78.60496411542549]
接続された自動運転車(CAV)は、交通事故におけるヒューマンエラーを低減し、道路効率を向上し、様々なタスクを実行する。これらのメリットを享受するためには、CAVが目標とする目的地へ自律的にナビゲートする必要がある。
本稿では,通信理論,制御理論,機械学習の収束を利用して,効果的なCAVナビゲーションを実現する手法を提案する。
論文 参考訳(メタデータ) (2023-07-05T21:38:36Z) - Model-Based Reinforcement Learning with Isolated Imaginations [61.67183143982074]
モデルに基づく強化学習手法であるIso-Dream++を提案する。
我々は、切り離された潜在的想像力に基づいて政策最適化を行う。
これにより、野生の混合力学源を孤立させることで、長い水平振動子制御タスクの恩恵を受けることができる。
論文 参考訳(メタデータ) (2023-03-27T02:55:56Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
本稿では,車載マイクロシミュレーションの合理化手法について述べる。
最小限の手動設計で高性能な制御戦略を発見する。
この研究は、波動緩和、交通信号、ランプ計測に類似した多くの創発的挙動を明らかにしている。
論文 参考訳(メタデータ) (2022-07-30T16:23:45Z) - Differentiable Control Barrier Functions for Vision-based End-to-End
Autonomous Driving [100.57791628642624]
本稿では,視覚に基づくエンドツーエンド自動運転のための安全保証学習フレームワークを提案する。
我々は、勾配降下によりエンドツーエンドに訓練された微分制御バリア関数(dCBF)を備えた学習システムを設計する。
論文 参考訳(メタデータ) (2022-03-04T16:14:33Z) - Risk-based implementation of COLREGs for autonomous surface vehicles
using deep reinforcement learning [1.304892050913381]
深層強化学習(DRL)は幅広い応用の可能性を示している。
本研究は,海上衝突防止国際規則(COLREG)のサブセットをDRLに基づく経路追従と障害物回避システムに組み込んだものである。
得られた自律エージェントは、訓練シナリオ、孤立した遭遇状況、実世界のシナリオのAISに基づくシミュレーションにおいて、経路追従とCOLREG準拠の衝突回避を動的に補間する。
論文 参考訳(メタデータ) (2021-11-30T21:32:59Z) - Decision-making at Unsignalized Intersection for Autonomous Vehicles:
Left-turn Maneuver with Deep Reinforcement Learning [17.715274169051494]
本研究は、自動運転車の信号なし交差点における深層強化学習に基づく左旋回意思決定フレームワークを提案する。
提案した意思決定戦略は、衝突率を効果的に低減し、輸送効率を向上させることができる。
この研究は、構築された左旋回制御構造がリアルタイムに適用可能な大きな可能性を持っていることも明らかにした。
論文 参考訳(メタデータ) (2020-08-14T22:44:26Z) - COLREG-Compliant Collision Avoidance for Unmanned Surface Vehicle using
Deep Reinforcement Learning [0.0]
追従と衝突回避は、無人表面船や他の自動運転車にとって、ロボット工学における2つの基本的なガイダンス問題である。
本稿では,連続制御タスクにおける最先端性能を示すDRLアルゴリズムであるPPOの可能性について検討する。
ノルウェー海の入り江であるトロンドハイム・フィヨルド(Trondheim Fjord)の高忠実な標高とAIS追跡データに基づいて、我々は訓練されたエージェントのパフォーマンスを挑戦的でダイナミックな実世界のシナリオで評価した。
論文 参考訳(メタデータ) (2020-06-16T22:05:58Z) - Enhanced Adversarial Strategically-Timed Attacks against Deep
Reinforcement Learning [91.13113161754022]
本稿では,DRLに基づくナビゲーションシステムに対して,選択した時間フレーム上の物理ノイズパターンを妨害することにより,タイミングに基づく逆方向戦略を導入する。
実験結果から, 対向タイミング攻撃は性能低下を引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2020-02-20T21:39:25Z) - Integrating Deep Reinforcement Learning with Model-based Path Planners
for Automated Driving [0.0]
本稿では、経路計画管を視覚ベースのDRLフレームワークに統合するためのハイブリッドアプローチを提案する。
要約すると、DRLエージェントは、パスプランナーのウェイポイントをできるだけ近くに追従するように訓練される。
実験の結果,提案手法は経路を計画し,ランダムに選択した起点-終点間を移動可能であることがわかった。
論文 参考訳(メタデータ) (2020-02-02T17:10:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。