論文の概要: Improving Quantum Recurrent Neural Networks with Amplitude Encoding
- arxiv url: http://arxiv.org/abs/2508.16784v1
- Date: Fri, 22 Aug 2025 20:31:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-26 18:43:45.176991
- Title: Improving Quantum Recurrent Neural Networks with Amplitude Encoding
- Title(参考訳): 振幅符号化による量子リカレントニューラルネットワークの改良
- Authors: Jack Morgan, Hamed Mohammadbagherpoor, Eric Ghysels,
- Abstract要約: 量子リカレントニューラルネットワークは、時間データを周期的に量子回路に入力される量子状態に符号化する。
最近導入された近似振幅符号化手法であるEnQodeを用いて振幅に基づくQRNNを評価し改善する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum machine learning holds promise for advancing time series forecasting. The Quantum Recurrent Neural Network (QRNN), inspired by classical RNNs, encodes temporal data into quantum states that are periodically input into a quantum circuit. While prior QRNN work has predominantly used angle encoding, alternative encoding strategies like amplitude encoding remain underexplored due to their high computational complexity. In this paper, we evaluate and improve amplitude-based QRNNs using EnQode, a recently introduced method for approximate amplitude encoding. We propose a simple pre-processing technique that augments amplitude encoded inputs with their pre-normalized magnitudes, leading to improved generalization on two real world data sets. Additionally, we introduce a novel circuit architecture for the QRNN that is mathematically equivalent to the original model but achieves a substantial reduction in circuit depth. Together, these contributions demonstrate practical improvements to QRNN design in both model performance and quantum resource efficiency.
- Abstract(参考訳): 量子機械学習は時系列予測の進歩を約束する。
古典的RNNにインスパイアされたQRNN(Quantum Recurrent Neural Network)は、時間的データを量子状態にエンコードし、定期的に量子回路に入力する。
QRNNの以前の研究では、主に角度符号化が用いられてきたが、振幅符号化のような代替符号化戦略は、高い計算複雑性のために未探索のままである。
本稿では,最近導入された近似振幅符号化手法であるEnQodeを用いて,振幅に基づくQRNNの評価と改善を行う。
本稿では,振幅符号化された入力を正規化前の大きさで拡張する単純な前処理手法を提案する。
さらに,元のモデルと数学的に等価であるが回路深度を大幅に低減できるQRNNのための新しい回路アーキテクチャを提案する。
これらのコントリビューションは、モデル性能と量子リソース効率の両方において、QRNN設計の実践的な改善を示す。
関連論文リスト
- CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) とContinuous Time Recurrent Quantum Neural Network (CTRQNet) を開発した。
LQNetとCTRQNetは、バイナリ分類によってCIFAR 10で40%の精度向上を実現している。
論文 参考訳(メタデータ) (2024-08-28T00:56:03Z) - Introducing Reduced-Width QNNs, an AI-inspired Ansatz Design Pattern [3.757262277494307]
変分量子アルゴリズムは、初めて産業的に関係のある量子優位性を得る最も有望な候補の1つである。
古典的ニューラルネットワーク(ANN)としてアナログ設定で使用される場合、量子ニューラルネットワーク(QNN)と呼ばれることが多い。
本稿では,近年のQNNにおけるドロップアウト正規化解析の結果に動機づけられた小型回路アンサッツの設計を提案する。
論文 参考訳(メタデータ) (2023-06-08T08:58:43Z) - Quantum Recurrent Neural Networks for Sequential Learning [11.133759363113867]
近いうちに量子優位性のあるアプリケーションを見つけるために,新しい種類の量子リカレントニューラルネットワーク(QRNN)を提案する。
我々のQRNNは、量子デバイスのコヒーレント時間に関してアルゴリズムの要求を大幅に削減できる、停滞した方法でQRBを積み重ねることによって構築されます。
数値実験により,我々のQRNNは古典的RNNと最先端QNNモデルに対する予測(分類)精度が向上し,逐次学習が可能となった。
論文 参考訳(メタデータ) (2023-02-07T04:04:39Z) - Reservoir Computing via Quantum Recurrent Neural Networks [0.5999777817331317]
既存のVQCまたはQNNベースの手法は、量子回路パラメータの勾配に基づく最適化を行うために、かなりの計算資源を必要とする。
本研究では、量子リカレントニューラルネットワーク(QRNN-RC)に貯水池計算(RC)フレームワークを適用し、逐次モデリングにアプローチする。
数値シミュレーションにより、QRNN-RCは、複数の関数近似および時系列タスクに対して、完全に訓練されたQRNNモデルに匹敵する結果が得られることが示された。
論文 参考訳(メタデータ) (2022-11-04T17:30:46Z) - Accelerating the training of single-layer binary neural networks using
the HHL quantum algorithm [58.720142291102135]
Harrow-Hassidim-Lloyd (HHL) の量子力学的実装から有用な情報が抽出可能であることを示す。
しかし,本論文では,HHLの量子力学的実装から有用な情報を抽出し,古典的側面における解を見つける際の複雑性を低減することを目的としている。
論文 参考訳(メタデータ) (2022-10-23T11:58:05Z) - Supervised learning of random quantum circuits via scalable neural
networks [0.0]
深部畳み込みニューラルネットワーク(CNN)は、単一キュービットと2キュービットの期待値を予測するために訓練されている。
CNNは、回路深度、ネットワーク深度、トレーニングセットサイズによって、量子デバイスよりも優れていることが多い。
論文 参考訳(メタデータ) (2022-06-21T13:05:52Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - Branching Quantum Convolutional Neural Networks [0.0]
小型量子コンピュータは、大規模量子および非常に大規模な古典的データセット上での学習タスクにおいて、既に潜在的な増加を見せている。
本稿では、分岐量子畳み込みニューラルネットワークであるQCNN(bQCNN)を、かなり高い表現性で一般化する。
論文 参考訳(メタデータ) (2020-12-28T19:00:03Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
量子ニューラルネットワーク(QNN)は、量子スピードアップを達成するために古典的ニューラルネットワークの一般化として提案されている。
QNNのトレーニングには、入力キュービット数に指数関数的に勾配速度がなくなるため、非常に大きなボトルネックが存在する。
木テンソルとステップ制御された構造を持つQNNを二分分類に適用し,ランダムな構造を持つQNNと比較してより高速な収束率と精度を示す。
論文 参考訳(メタデータ) (2020-11-12T08:32:04Z) - Decentralizing Feature Extraction with Quantum Convolutional Neural
Network for Automatic Speech Recognition [101.69873988328808]
特徴抽出のための量子回路エンコーダからなる量子畳み込みニューラルネットワーク(QCNN)を構築した。
入力音声はまず、Mel-spectrogramを抽出するために量子コンピューティングサーバにアップストリームされる。
対応する畳み込み特徴は、ランダムパラメータを持つ量子回路アルゴリズムを用いて符号化される。
符号化された機能は、最終認識のためにローカルRNNモデルにダウンストリームされる。
論文 参考訳(メタデータ) (2020-10-26T03:36:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。