論文の概要: Supervised learning of random quantum circuits via scalable neural
networks
- arxiv url: http://arxiv.org/abs/2206.10348v1
- Date: Tue, 21 Jun 2022 13:05:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-22 20:29:45.997511
- Title: Supervised learning of random quantum circuits via scalable neural
networks
- Title(参考訳): スケーラブルニューラルネットワークによるランダム量子回路の教師あり学習
- Authors: S. Cantori, D. Vitali, S. Pilati
- Abstract要約: 深部畳み込みニューラルネットワーク(CNN)は、単一キュービットと2キュービットの期待値を予測するために訓練されている。
CNNは、回路深度、ネットワーク深度、トレーニングセットサイズによって、量子デバイスよりも優れていることが多い。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting the output of quantum circuits is a hard computational task that
plays a pivotal role in the development of universal quantum computers. Here we
investigate the supervised learning of output expectation values of random
quantum circuits. Deep convolutional neural networks (CNNs) are trained to
predict single-qubit and two-qubit expectation values using databases of
classically simulated circuits. These circuits are represented via an
appropriately designed one-hot encoding of the constituent gates. The
prediction accuracy for previously unseen circuits is analyzed, also making
comparisons with small-scale quantum computers available from the free IBM
Quantum program. The CNNs often outperform the quantum devices, depending on
the circuit depth, on the network depth, and on the training set size. Notably,
our CNNs are designed to be scalable. This allows us exploiting transfer
learning and performing extrapolations to circuits larger than those included
in the training set. These CNNs also demonstrate remarkable resilience against
noise, namely, they remain accurate even when trained on (simulated)
expectation values averaged over very few measurements.
- Abstract(参考訳): 量子回路の出力を予測することは、普遍的な量子コンピュータの開発において重要な役割を担っている。
本稿では,ランダム量子回路の出力期待値の教師付き学習について検討する。
深層畳み込みニューラルネットワーク (deep convolutional neural network, cnns) は、古典的シミュレーション回路のデータベースを用いて、単一量子ビットと2量子ビットの期待値を予測するように訓練されている。
これらの回路は、適切に設計された構成ゲートのワンホット符号化によって表現される。
未確認回路の予測精度を解析し,IBM量子プログラムから利用可能な小型量子コンピュータとの比較を行った。
CNNは、回路深度、ネットワーク深度、トレーニングセットサイズによって、量子デバイスよりも優れていることが多い。
特に、私たちのCNNはスケーラブルに設計されています。
これにより、トレーニングセットに含まれるものよりも大きい回路に対して、転送学習と外挿を活用できる。
これらのCNNはまた、ノイズに対する顕著な耐性を示しており、非常に少ない測定値でトレーニングされた(シミュレーションされた)期待値でも正確である。
関連論文リスト
- CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) とContinuous Time Recurrent Quantum Neural Network (CTRQNet) を開発した。
LQNetとCTRQNetは、バイナリ分類によってCIFAR 10で40%の精度向上を実現している。
論文 参考訳(メタデータ) (2024-08-28T00:56:03Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Synergy between noisy quantum computers and scalable classical deep learning [0.4999814847776097]
雑音量子コンピュータの計算能力と古典的スケーラブル畳み込みニューラルネットワーク(CNN)の組み合わせの可能性について検討する。
目標は、量子イジングモデルのトロッター分解力学を表すパラメータ化量子回路の正確な期待値を正確に予測することである。
量子情報のおかげで、古典的な記述子のみに基づく教師あり学習が失敗しても、私たちのCNNは成功します。
論文 参考訳(メタデータ) (2024-04-11T14:47:18Z) - Challenges and opportunities in the supervised learning of quantum
circuit outputs [0.0]
ディープニューラルネットワークは、関連するランダム量子回路の出力特性を予測できることが証明されている。
変動量子アルゴリズムでよく使用される回路の出力期待値を予測するために,ニューラルネットワークがどの程度の精度で学習できるかを検討する。
論文 参考訳(メタデータ) (2024-02-07T16:10:13Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Quantum neural networks [0.0]
この論文は、過去数十年で最もエキサイティングな研究分野である量子コンピューティングと機械学習を組み合わせたものだ。
本稿では、汎用量子計算が可能で、トレーニング中にメモリ要求の少ない散逸型量子ニューラルネットワーク(DQNN)を紹介する。
論文 参考訳(メタデータ) (2022-05-17T07:47:00Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
量子回路をキューネットワークとしてモデル化することを提案する。
提案手法はスケーラビリティが高く,大規模量子回路のコンパイルに必要となる潜在的な速度と精度を有する。
論文 参考訳(メタデータ) (2021-06-26T10:55:52Z) - QFCNN: Quantum Fourier Convolutional Neural Network [4.344289435743451]
量子フーリエ畳み込みネットワーク(Quantum Fourier Convolutional Network, QFCN)というハイブリッド量子古典回路を提案する。
提案モデルは,古典的CNNと比較して指数的な高速化を実現し,既存の量子CNNの最良の結果よりも向上する。
交通予測や画像分類など,さまざまなディープラーニングタスクに適用することで,このアーキテクチャの可能性を示す。
論文 参考訳(メタデータ) (2021-06-19T04:37:39Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Branching Quantum Convolutional Neural Networks [0.0]
小型量子コンピュータは、大規模量子および非常に大規模な古典的データセット上での学習タスクにおいて、既に潜在的な増加を見せている。
本稿では、分岐量子畳み込みニューラルネットワークであるQCNN(bQCNN)を、かなり高い表現性で一般化する。
論文 参考訳(メタデータ) (2020-12-28T19:00:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。