論文の概要: Anemoi: A Semi-Centralized Multi-agent Systems Based on Agent-to-Agent Communication MCP server from Coral Protocol
- arxiv url: http://arxiv.org/abs/2508.17068v1
- Date: Sat, 23 Aug 2025 15:45:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-26 18:43:45.322505
- Title: Anemoi: A Semi-Centralized Multi-agent Systems Based on Agent-to-Agent Communication MCP server from Coral Protocol
- Title(参考訳): Anemoi:Coral Protocol によるエージェント・ツー・エージェント通信 MCP サーバに基づく半集中型マルチエージェントシステム
- Authors: Xinxing Ren, Caelum Forder, Qianbo Zang, Ahsen Tahir, Roman J. Georgio, Suman Deb, Peter Carroll, Önder Gürcan, Zekun Guo,
- Abstract要約: Anemoi は、Coral Protocol の Agent-to-Agent (A2A) 通信 MCP サーバ上に構築された、半集中型の MAS である。
従来のデザインとは異なり、Anemoiは構造的かつ直接的なエージェント間コラボレーションを可能にし、すべてのエージェントが進捗を監視し、結果を評価し、ボトルネックを特定し、リアルタイムに改善を提案する。
- 参考スコア(独自算出の注目度): 0.7288110873705294
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advances in generalist multi-agent systems (MAS) have largely followed a context-engineering plus centralized paradigm, where a planner agent coordinates multiple worker agents through unidirectional prompt passing. While effective under strong planner models, this design suffers from two critical limitations: (1) strong dependency on the planner's capability, which leads to degraded performance when a smaller LLM powers the planner; and (2) limited inter-agent communication, where collaboration relies on costly prompt concatenation and context injection, introducing redundancy and information loss. To address these challenges, we propose Anemoi, a semi-centralized MAS built on the Agent-to-Agent (A2A) communication MCP server from Coral Protocol. Unlike traditional designs, Anemoi enables structured and direct inter-agent collaboration, allowing all agents to monitor progress, assess results, identify bottlenecks, and propose refinements in real time. This paradigm reduces reliance on a single planner, supports adaptive plan updates, and minimizes redundant context passing, resulting in more scalable and cost-efficient execution. Evaluated on the GAIA benchmark, Anemoi achieved 52.73\% accuracy with a small LLM (GPT-4.1-mini) as the planner, surpassing the strongest open-source baseline OWL (43.63\%) by +9.09\% under identical LLM settings. Our implementation is publicly available at https://github.com/Coral-Protocol/Anemoi.
- Abstract(参考訳): 汎用マルチエージェントシステム(MAS)の最近の進歩は、一方向のプロンプトパスを通じて、プランナーエージェントが複数のワーカーエージェントを調整するという、コンテキストエンジニアリングと集中型のパラダイムに大きく追随している。
強烈なプランナーモデルの下では有効であるが,(1)プランナー能力への強い依存,; より小さなLCMがプランナーを駆動する際の性能低下につながる; (2) 協力がコストのかかる結合とコンテキスト注入に依存し,冗長性と情報損失をもたらす,という2つの重要な制約に悩まされている。
これらの課題に対処するため、Coral Protocol から Agent-to-Agent (A2A) 通信 MCP サーバ上に構築された半集中型 MAS である Anemoi を提案する。
従来のデザインとは異なり、Anemoiは構造的かつ直接的なエージェント間コラボレーションを可能にし、すべてのエージェントが進捗を監視し、結果を評価し、ボトルネックを特定し、リアルタイムに改善を提案する。
このパラダイムは、単一のプランナへの依存を減らし、適応的な計画更新をサポートし、冗長なコンテキストパスを最小限にし、よりスケーラブルでコスト効率のよい実行を実現する。
GAIAのベンチマークで評価され、Anemoiは52.73\%の精度で小さなLLM(GPT-4.1-mini)をプランナーとして達成し、同じLLM設定下において最強のオープンソースベースラインOWL(43.63\%)を+9.09\%で上回った。
私たちの実装はhttps://github.com/Coral-Protocol/Anemoi.comで公開されています。
関連論文リスト
- AnyMAC: Cascading Flexible Multi-Agent Collaboration via Next-Agent Prediction [70.60422261117816]
本稿では,グラフ構造ではなくシーケンシャル構造を用いて,マルチエージェント協調を再考するフレームワークを提案する。
提案手法は,(1)各ステップで最も適したエージェントロールを選択するNext-Agent Predictionと,(2)各エージェントが前ステップから関連する情報にアクセスできるようにするNext-Context Selectionの2つの重要な方向に焦点を当てる。
論文 参考訳(メタデータ) (2025-06-21T18:34:43Z) - AgentNet: Decentralized Evolutionary Coordination for LLM-based Multi-Agent Systems [22.291969093748005]
AgentNet(エージェントネット)は、マルチエージェントシステムのための分散化された検索型生成(RAG)ベースのフレームワークである。
静的ロールや集中制御の以前のアプローチとは異なり、AgentNetはエージェントがローカルの専門知識とコンテキストに基づいて接続とタスクのルーティングを調整することができる。
実験の結果,AgentNetは単一エージェントと集中型マルチエージェントのベースラインよりも高いタスク精度を実現することがわかった。
論文 参考訳(メタデータ) (2025-04-01T09:45:25Z) - MultiAgentBench: Evaluating the Collaboration and Competition of LLM agents [59.825725526176655]
大規模言語モデル(LLM)は、自律的なエージェントとして顕著な能力を示している。
既存のベンチマークでは、単一エージェントタスクにフォーカスするか、狭いドメインに限定されており、マルチエージェントのコーディネーションと競合のダイナミクスを捉えていない。
多様な対話シナリオにまたがってLLMベースのマルチエージェントシステムを評価するためのベンチマークであるMultiAgentBenchを紹介する。
論文 参考訳(メタデータ) (2025-03-03T05:18:50Z) - LLM-Powered Decentralized Generative Agents with Adaptive Hierarchical Knowledge Graph for Cooperative Planning [12.996741471128539]
動的オープンワールドシナリオにおける長期協力のためのインテリジェントエージェントの開発は、マルチエージェントシステムにおける大きな課題である。
本稿では,分散適応型知識グラフメモリと構造化通信システム(DAMCS)を,新しいマルチエージェントクラフト環境において提案する。
我々の生成エージェントはLLM(Large Language Models)を利用しており、長期計画と推論のために外部知識と言語を活用することで従来のMARLエージェントよりもスケーラブルである。
論文 参考訳(メタデータ) (2025-02-08T05:26:02Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
マルチエージェントシステムにおけるエージェント指向計画のための新しいフレームワークであるAOPを提案する。
本研究では, エージェント指向計画の3つの重要な設計原則, 可解性, 完全性, 非冗長性を明らかにする。
大規模実験は,マルチエージェントシステムにおける単一エージェントシステムと既存の計画戦略と比較して,現実の問題を解決する上でのAOPの進歩を実証している。
論文 参考訳(メタデータ) (2024-10-03T04:07:51Z) - Planning with Multi-Constraints via Collaborative Language Agents [13.550774629515843]
本稿では,協調型マルチエージェントシステムのためのゼロショット手法であるPMC(Planning with Multi-Constraints)を紹介する。
PMCは、制約で複雑なタスク計画を簡単にし、従属タスクの階層に分解する。
PMCはTravelPlannerで平均42.68%の成功率を記録し、GPT-4 (2.92%) をはるかに上回り、API-BankでReActを13.64%上回った。
論文 参考訳(メタデータ) (2024-05-26T10:33:17Z) - Agent-FLAN: Designing Data and Methods of Effective Agent Tuning for Large Language Models [56.00992369295851]
オープンソースのLarge Language Models(LLM)は、さまざまなNLPタスクで大きな成功を収めていますが、エージェントとして振る舞う場合、それでもAPIベースのモデルよりもはるかに劣っています。
本稿では,(1) エージェント学習コーパスを,(1) エージェント学習データの分布から大きくシフトするエージェント推論と,(2) エージェントタスクが必要とする能力に異なる学習速度を示すエージェント学習コーパスと,(3) 幻覚を導入することでエージェント能力を改善する際の副作用について述べる。
本稿では,エージェントのためのFLANモデルを効果的に構築するためのエージェントFLANを提案する。
論文 参考訳(メタデータ) (2024-03-19T16:26:10Z) - MASP: Scalable GNN-based Planning for Multi-Agent Navigation [18.70078556851899]
Multi-Agent Scalable Graph-based Planner (MASP)は、ナビゲーションタスクのためのゴール条件付き階層型プランナーである。
MASPは、大規模な探索空間を複数の目標条件付き部分空間に分解することで、空間の複雑さを低減するために階層的なフレームワークを採用している。
エージェントの協力とさまざまなチームサイズへの適応のために、エージェントと目標をグラフとしてモデル化し、それらの関係をよりよく捉えます。
論文 参考訳(メタデータ) (2023-12-05T06:05:04Z) - A Dynamic LLM-Powered Agent Network for Task-Oriented Agent Collaboration [55.35849138235116]
本稿では,様々なタスクやドメインに対する動的コミュニケーション構造において,候補からエージェントのチームを自動的に選択する手法を提案する。
具体的には, LLMを利用したエージェント協調のための動的LLMパワーエージェントネットワーク(textDyLAN$)というフレームワークを構築した。
我々は、コード生成、意思決定、一般的な推論、算術的推論タスクにおいて、適度な計算コストで、DyLANが強力なベースラインを上回ることを実証する。
論文 参考訳(メタデータ) (2023-10-03T16:05:48Z) - A Unified and Efficient Coordinating Framework for Autonomous DBMS
Tuning [34.85351481228439]
既存のMLベースのエージェントを効率的に活用するための統合コーディネートフレームワークを提案する。
機械学習ベースのエージェントを効果的に利用し、ワークロードの実行時間に1.414.1Xのスピードアップでより良い設定を実現できることを示す。
論文 参考訳(メタデータ) (2023-03-10T05:27:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。