論文の概要: Rao Differential Privacy
- arxiv url: http://arxiv.org/abs/2508.17135v1
- Date: Sat, 23 Aug 2025 20:25:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-26 18:43:45.360282
- Title: Rao Differential Privacy
- Title(参考訳): Rao差分プライバシー
- Authors: Carlos Soto,
- Abstract要約: 差別化プライバシ(DP)は、最近、プライベートな見積を公開するためのプライバシの定義として登場した。
提案したプライバシの定義は、シーケンシャルな構成を改善しつつ、以前のプライバシの定義の解釈を共有していることを示す。
- 参考スコア(独自算出の注目度): 0.5809679595578517
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Differential privacy (DP) has recently emerged as a definition of privacy to release private estimates. DP calibrates noise to be on the order of an individuals contribution. Due to the this calibration a private estimate obscures any individual while preserving the utility of the estimate. Since the original definition, many alternate definitions have been proposed. These alternates have been proposed for various reasons including improvements on composition results, relaxations, and formalizations. Nevertheless, thus far nearly all definitions of privacy have used a divergence of densities as the basis of the definition. In this paper we take an information geometry perspective towards differential privacy. Specifically, rather than define privacy via a divergence, we define privacy via the Rao distance. We show that our proposed definition of privacy shares the interpretation of previous definitions of privacy while improving on sequential composition.
- Abstract(参考訳): 差別化プライバシ(DP)は、最近、プライベートな見積を公開するためのプライバシの定義として登場した。
DPは個人の貢献の順序でノイズを校正する。
このキャリブレーションにより、プライベートな見積もりは、見積もりの効用を保ちながら、個人を曖昧にします。
元々の定義から、多くの代替的な定義が提案されている。
これらの代替案は、合成結果の改善、緩和、形式化など様々な理由で提案されている。
それでも、これまでのところ、プライバシーの定義のほとんどすべてが、その定義の基盤として密度のばらつきを利用してきた。
本稿では,差分プライバシーに対する情報幾何学的視点について述べる。
具体的には、分岐によってプライバシを定義するのではなく、Rao距離を介してプライバシを定義する。
提案したプライバシの定義は、シーケンシャルな構成を改善しつつ、以前のプライバシの定義の解釈を共有していることを示す。
関連論文リスト
- Differential Privacy Overview and Fundamental Techniques [63.0409690498569]
この章は、"Differential Privacy in Artificial Intelligence: From Theory to Practice"という本の一部である。
まず、データのプライバシ保護のためのさまざまな試みについて説明し、その失敗の場所と理由を強調した。
次に、プライバシ保護データ分析の領域を構成する重要なアクター、タスク、スコープを定義する。
論文 参考訳(メタデータ) (2024-11-07T13:52:11Z) - Formalization of Differential Privacy in Isabelle/HOL [0.16574413179773761]
本稿では,Isabelle/HOLライブラリを提案する。
我々の知る限り、これは連続確率分布をサポートする微分プライバシーの最初の形式化である。
論文 参考訳(メタデータ) (2024-10-20T13:06:13Z) - Models Matter: Setting Accurate Privacy Expectations for Local and Central Differential Privacy [14.40391109414476]
局所モデルと中心モデルにおける差分プライバシーの新たな説明を設計・評価する。
我々は、プライバシー栄養ラベルのスタイルにおける結果に焦点を当てた説明が、正確なプライバシー期待を設定するための有望なアプローチであることに気付きました。
論文 参考訳(メタデータ) (2024-08-16T01:21:57Z) - Mean Estimation Under Heterogeneous Privacy: Some Privacy Can Be Free [13.198689566654103]
本研究は,異種差分プライバシー制約に基づく平均推定の問題について考察する。
提案するアルゴリズムは,プライバシレベルが異なる2つのユーザグループが存在する場合に,ミニマックス最適であることが示されている。
論文 参考訳(メタデータ) (2023-04-27T05:23:06Z) - On Differentially Private Online Predictions [74.01773626153098]
オンラインプロセスを扱うために,共同微分プライバシーのインタラクティブなバリエーションを導入する。
グループプライバシ、コンポジション、ポストプロセッシングの(適切なバリエーション)を満たすことを実証する。
次に、オンライン分類の基本設定において、インタラクティブな共同プライバシーのコストについて検討する。
論文 参考訳(メタデータ) (2023-02-27T19:18:01Z) - How Do Input Attributes Impact the Privacy Loss in Differential Privacy? [55.492422758737575]
DPニューラルネットワークにおけるオブジェクトごとの規範と個人のプライバシ損失との関係について検討する。
プライバシ・ロス・インプット・サセプティビリティ(PLIS)と呼ばれる新しい指標を導入し、被験者のプライバシ・ロスを入力属性に適応させることを可能にした。
論文 参考訳(メタデータ) (2022-11-18T11:39:03Z) - Algorithms with More Granular Differential Privacy Guarantees [65.3684804101664]
我々は、属性ごとのプライバシー保証を定量化できる部分微分プライバシー(DP)について検討する。
本研究では,複数の基本データ分析および学習タスクについて検討し,属性ごとのプライバシパラメータが個人全体のプライバシーパラメータよりも小さい設計アルゴリズムについて検討する。
論文 参考訳(メタデータ) (2022-09-08T22:43:50Z) - Fully Adaptive Composition in Differential Privacy [53.01656650117495]
よく知られた高度な合成定理は、基本的なプライバシー構成が許すよりも、プライベートデータベースを2倍にクエリすることができる。
アルゴリズムとプライバシパラメータの両方を適応的に選択できる完全適応型合成を導入する。
適応的に選択されたプライバシパラメータが許されているにもかかわらず、定数を含む高度なコンポジションのレートに適合するフィルタを構築します。
論文 参考訳(メタデータ) (2022-03-10T17:03:12Z) - When differential privacy meets NLP: The devil is in the detail [3.5503507997334958]
テキストの書き直しのための微分プライベート自動エンコーダであるADePTの形式解析を行う。
以上の結果から,ADePTは差分プライベートではないことが判明した。
論文 参考訳(メタデータ) (2021-09-07T16:12:25Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
エピソード強化学習(RL)のためのプライバシー保護探索ポリシーを設計する。
まず、共同微分プライバシー(JDP)の概念を用いた有意義なプライバシー定式化を提供する。
そこで我々は,強いPACと後悔境界を同時に達成し,JDP保証を享受する,プライベートな楽観主義に基づく学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-09-18T20:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。