論文の概要: FedERL: Federated Efficient and Robust Learning for Common Corruptions
- arxiv url: http://arxiv.org/abs/2508.17381v1
- Date: Sun, 24 Aug 2025 14:34:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-26 18:43:45.495385
- Title: FedERL: Federated Efficient and Robust Learning for Common Corruptions
- Title(参考訳): FedERL: 共用的破壊に対するフェデレート効率とロバスト学習
- Authors: Omar Bekdache, Naresh Shanbhag,
- Abstract要約: フェデレーション学習(FL)は、データプライバシを保持しながら、エッジデバイスへのディープラーニングモデルのデプロイを加速する。
既存の堅牢なトレーニング手法は計算コストが高く、リソース制約のあるクライアントには適さない。
我々は,クライアント側における時間とエネルギーの制約下での汚職の堅牢性を明確化するための最初の取り組みとして,効率的で堅牢な学習を目的としたFedERLを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) accelerates the deployment of deep learning models on edge devices while preserving data privacy. However, FL systems face challenges due to client-side constraints on computational resources, and from a lack of robustness to common corruptions such as noise, blur, and weather effects. Existing robust training methods are computationally expensive and unsuitable for resource-constrained clients. We propose FedERL, federated efficient and robust learning, as the first work to explicitly address corruption robustness under time and energy constraints on the client side. At its core, FedERL employs a novel data-agnostic robust training (DART) method on the server to enhance robustness without access to the training data. In doing so, FedERL ensures zero robustness overhead for clients. Extensive experiments demonstrate FedERL's ability to handle common corruptions at a fraction of the time and energy cost of traditional robust training methods. In scenarios with limited time and energy budgets, FedERL surpasses the performance of traditional robust training, establishing it as a practical and scalable solution for real-world FL applications.
- Abstract(参考訳): フェデレーション学習(FL)は、データプライバシを保持しながら、エッジデバイスへのディープラーニングモデルのデプロイを加速する。
しかし、FLシステムは計算資源に対するクライアント側の制約や、ノイズ、ぼかし、気象効果などの一般的な汚職に対する堅牢性の欠如により、課題に直面している。
既存の堅牢なトレーニング手法は計算コストが高く、リソース制約のあるクライアントには適さない。
我々は,クライアント側における時間とエネルギーの制約下での汚職の堅牢性を明確化するための最初の取り組みとして,効率的で堅牢な学習を目的としたFedERLを提案する。
コアとなるFedERLは、トレーニングデータにアクセスせずに堅牢性を高めるために、サーバに新しいデータに依存しない堅牢なトレーニング(DART)手法を採用している。
そうすることで、FedERLはクライアントのロバスト性オーバーヘッドをゼロにする。
大規模な実験は、伝統的な堅牢な訓練手法の時間とエネルギーコストのごく一部で、FedERLが一般的な汚職を扱う能力を示している。
時間とエネルギーの予算が限られているシナリオでは、FedERLは従来の堅牢なトレーニングのパフォーマンスを超越し、現実のFLアプリケーションのための実用的でスケーラブルなソリューションとして確立します。
関連論文リスト
- AugFL: Augmenting Federated Learning with Pretrained Models [35.42275317522609]
フェデレートラーニング(FL)は近年広く関心を集めている。
本稿では,中央サーバと分散クライアントによるネットワークFLシステムについて考察する。
論文 参考訳(メタデータ) (2025-03-04T00:37:33Z) - Federated Learning with Workload Reduction through Partial Training of Client Models and Entropy-Based Data Selection [3.9981390090442694]
我々は,エッジデバイス上でのトレーニング負荷を削減するために,部分的クライアントモデルのファインチューニングとエントロピーベースのデータ選択を組み合わせた新しいアプローチであるFedFT-EDSを提案する。
実験の結果,FedFT-EDSは50%のユーザデータしか使用せず,ベースライン法,FedAvg,FedProxに比べてグローバルモデルの性能が向上していることがわかった。
FedFT-EDSは、クライアントでのトレーニング時間の3分の1を使用して、クライアントの学習効率を最大3倍改善する。
論文 参考訳(メタデータ) (2024-12-30T22:47:32Z) - Safely Learning with Private Data: A Federated Learning Framework for Large Language Model [3.1077263218029105]
フェデレートラーニング(FL)は、分散プライベートデータを用いたモデルのトレーニングに理想的なソリューションである。
FedAvgのような従来のフレームワークは、大きな言語モデル(LLM)には適さない
本稿では,サーバサイド攻撃とピアクライアント攻撃の両方によるデータ漏洩を防止するFL-GLMを提案する。
論文 参考訳(メタデータ) (2024-06-21T06:43:15Z) - Fast-FedUL: A Training-Free Federated Unlearning with Provable Skew Resilience [26.647028483763137]
我々は、Fast-FedULを紹介した。Fast-FedULは、フェデレートラーニング(FL)のための調整済みの未学習手法である。
訓練されたモデルからターゲットクライアントの影響を体系的に除去するアルゴリズムを開発した。
実験結果から、Fast-FedULはターゲットクライアントのほとんどすべてのトレースを効果的に削除し、未ターゲットクライアントの知識を維持していることがわかった。
論文 参考訳(メタデータ) (2024-05-28T10:51:38Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
対人訓練と連合学習の組み合わせは、望ましくない頑丈さの劣化につながる可能性がある。
我々は、Slack Federated Adversarial Training (SFAT)と呼ばれる新しいフレームワークを提案する。
各種ベンチマークおよび実世界のデータセットに対するSFATの合理性と有効性を検証する。
論文 参考訳(メタデータ) (2023-03-01T06:16:15Z) - FedDBL: Communication and Data Efficient Federated Deep-Broad Learning
for Histopathological Tissue Classification [65.7405397206767]
本稿では,FedDBL(Federated Deep-Broad Learning)を提案する。
FedDBLは1ラウンドの通信と限られたトレーニングサンプルで競合相手をはるかに上回り、マルチラウンドの通信で同等のパフォーマンスを達成している。
異なるクライアント間でのデータやディープモデルを共有しないため、プライバシ問題は十分に解決されており、モデルのセキュリティはモデル反転攻撃のリスクなしに保証される。
論文 参考訳(メタデータ) (2023-02-24T14:27:41Z) - FIRE: A Failure-Adaptive Reinforcement Learning Framework for Edge Computing Migrations [52.85536740465277]
FIREは、エッジコンピューティングのディジタルツイン環境でRLポリシーをトレーニングすることで、まれなイベントに適応するフレームワークである。
ImREは重要なサンプリングに基づくQ-ラーニングアルゴリズムであり、希少事象をその値関数への影響に比例してサンプリングする。
FIREは故障時にバニラRLやグリーディベースラインと比較してコストを削減できることを示す。
論文 参考訳(メタデータ) (2022-09-28T19:49:39Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Federated Robustness Propagation: Sharing Adversarial Robustness in
Federated Learning [98.05061014090913]
フェデレートラーニング(FL)は、生データを共有することなく、参加するユーザのセットから学習する、人気のある分散ラーニングスキーマとして登場した。
敵対的トレーニング(AT)は集中学習のための健全なソリューションを提供する。
既存のFL技術では,非IDユーザ間の対向的ロバスト性を効果的に広めることができないことを示す。
本稿では, バッチ正規化統計量を用いてロバスト性を伝達する, 単純かつ効果的な伝搬法を提案する。
論文 参考訳(メタデータ) (2021-06-18T15:52:33Z) - Toward Smart Security Enhancement of Federated Learning Networks [109.20054130698797]
本稿では,フェデレートラーニングネットワーク(FLN)の脆弱性について概説し,毒殺攻撃の概要を紹介する。
FLNのためのスマートセキュリティ強化フレームワークを提案する。
深層強化学習は、良質なトレーニング結果を提供するエッジデバイス(ED)の挙動パターンを学ぶために応用される。
論文 参考訳(メタデータ) (2020-08-19T08:46:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。