論文の概要: Quantum Graph Attention Network: A Novel Quantum Multi-Head Attention Mechanism for Graph Learning
- arxiv url: http://arxiv.org/abs/2508.17630v3
- Date: Thu, 28 Aug 2025 12:24:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-29 11:47:01.190215
- Title: Quantum Graph Attention Network: A Novel Quantum Multi-Head Attention Mechanism for Graph Learning
- Title(参考訳): 量子グラフアテンションネットワーク:グラフ学習のための新しい量子マルチヘッドアテンション機構
- Authors: An Ning, Tai Yue Li, Nan Yow Chen,
- Abstract要約: 量子グラフ注意ネットワーク(Quantum Graph Attention Network、QGAT)は、変動量子回路をアテンション機構に統合するハイブリッドグラフニューラルネットワークである。
複雑な構造的依存関係を捕捉するQGATの有効性を示し、帰納的シナリオにおける一般化を改善した。
実験により、量子埋め込みは特徴や構造的ノイズに対するロバスト性を高め、実世界のノイズデータを扱う利点を示唆している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose the Quantum Graph Attention Network (QGAT), a hybrid graph neural network that integrates variational quantum circuits into the attention mechanism. At its core, QGAT employs strongly entangling quantum circuits with amplitude-encoded node features to enable expressive nonlinear interactions. Distinct from classical multi-head attention that separately computes each head, QGAT leverages a single quantum circuit to simultaneously generate multiple attention coefficients. This quantum parallelism facilitates parameter sharing across heads, substantially reducing computational overhead and model complexity. Classical projection weights and quantum circuit parameters are optimized jointly in an end-to-end manner, ensuring flexible adaptation to learning tasks. Empirical results demonstrate QGAT's effectiveness in capturing complex structural dependencies and improved generalization in inductive scenarios, highlighting its potential for scalable quantum-enhanced learning across domains such as chemistry, biology, and network analysis. Furthermore, experiments confirm that quantum embedding enhances robustness against feature and structural noise, suggesting advantages in handling real-world noisy data. The modularity of QGAT also ensures straightforward integration into existing architectures, allowing it to easily augment classical attention-based models.
- Abstract(参考訳): 本稿では,変分量子回路をアテンション機構に統合したハイブリッドグラフニューラルネットワークであるQuantum Graph Attention Network (QGAT)を提案する。
コアでは、QGATは振幅符号化ノード特徴を持つ強い絡み合う量子回路を用いて、表現的非線形相互作用を可能にする。
QGATは、各ヘッドを別々に計算する古典的なマルチヘッドアテンションとは違い、単一の量子回路を利用して複数のアテンション係数を同時に生成する。
この量子並列性は、ヘッド間のパラメータ共有を促進し、計算オーバーヘッドとモデルの複雑さを大幅に削減する。
古典的な投影重みと量子回路パラメータは、エンドツーエンドで協調的に最適化され、学習タスクへの柔軟な適応が保証される。
実証的な結果から、QGATは複雑な構造的依存関係を捕捉し、帰納的シナリオにおける一般化を改善し、化学、生物学、ネットワーク分析といった領域にわたるスケーラブルな量子強化学習の可能性を強調した。
さらに、量子埋め込みにより特徴や構造的ノイズに対する堅牢性が向上し、実世界のノイズデータを扱う利点が示唆される。
QGATのモジュラリティは、既存のアーキテクチャへの直接的な統合も保証し、従来の注目モデルを簡単に拡張できる。
関連論文リスト
- Quantum Adaptive Excitation Network with Variational Quantum Circuits for Channel Attention [0.2812395851874055]
量子適応励起ネットワーク(QAE-Net)について紹介する。
QAE-Netは、畳み込みニューラルネットワーク(CNN)におけるチャネルアテンションメカニズムを強化するために設計されたハイブリッド量子古典フレームワークである。
論文 参考訳(メタデータ) (2025-07-15T11:40:37Z) - VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
変分量子回路(VQC)は、量子機械学習のための新しい経路を提供する。
それらの実用的応用は、制約付き線形表現性、最適化課題、量子ハードウェアノイズに対する鋭敏感といった固有の制限によって妨げられている。
この研究は、これらの障害を克服するために設計されたスケーラブルで堅牢なハイブリッド量子古典アーキテクチャであるVQC-MLPNetを導入している。
論文 参考訳(メタデータ) (2025-06-12T01:38:15Z) - Characterizing Non-Markovian Dynamics of Open Quantum Systems [0.0]
我々はTCLマスター方程式を用いて非マルコフ進化を特徴付ける構造保存手法を開発した。
本稿では,ローレンス・リバモア国立研究所のQuantum Device Integration Testbed (QuDIT) における超伝導量子ビットの実験データを用いた手法について述べる。
これらの知見は、短期量子プロセッサにおける量子制御とエラー軽減に寄与する、オープン量子システムの効率的なモデリング戦略に関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2025-03-28T04:43:24Z) - Quantum autoencoders for image classification [0.0]
量子オートエンコーダ(QAE)は、パラメータチューニングのみに古典的な最適化を利用する。
本研究では,QAEを用いた新しい画像分類手法を提案する。
論文 参考訳(メタデータ) (2025-02-21T07:13:38Z) - Quantum reservoir computing on random regular graphs [0.0]
量子貯水池コンピューティング(QRC)は、入力駆動多体量子システムと古典的な学習技術を組み合わせた低複雑性学習パラダイムである。
我々は、情報局在化、動的量子相関、および乱れハミルトニアンの多体構造について研究する。
そこで本研究では、乱れたアナログ量子学習プラットフォームの最適設計のためのガイドラインを提供する。
論文 参考訳(メタデータ) (2024-09-05T16:18:03Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum machine learning for image classification [39.58317527488534]
本研究では、量子力学の原理を有効計算に活用する2つの量子機械学習モデルを紹介する。
我々の最初のモデルは、並列量子回路を持つハイブリッド量子ニューラルネットワークであり、ノイズの多い中間スケール量子時代においても計算の実行を可能にする。
第2のモデルは、クオン進化層を持つハイブリッド量子ニューラルネットワークを導入し、畳み込みプロセスによる画像の解像度を低下させる。
論文 参考訳(メタデータ) (2023-04-18T18:23:20Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
古典的なディープニューラルネットワークの量子アナログを構築することは、量子コンピューティングにおける根本的な課題である。
鍵となる問題は、古典的なディープラーニングの本質的な非線形性にどのように対処するかである。
我々は、深層機械学習のこれらの側面を複製できる量子機械学習の定式化であるQuantum Path Kernelを紹介する。
論文 参考訳(メタデータ) (2022-12-22T16:06:24Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。