論文の概要: Automated Classification of Normal and Atypical Mitotic Figures Using ConvNeXt V2: MIDOG 2025 Track 2
- arxiv url: http://arxiv.org/abs/2508.18831v1
- Date: Tue, 26 Aug 2025 09:11:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-27 17:42:38.771677
- Title: Automated Classification of Normal and Atypical Mitotic Figures Using ConvNeXt V2: MIDOG 2025 Track 2
- Title(参考訳): ConvNeXt V2: MIDOG 2025 Track 2 を用いた正常および非定型相転移図の自動分類
- Authors: Yosuke Yamagishi, Shouhei Hanaoka,
- Abstract要約: 本報告では,正常ミオティックフィギュア (NMF) と非定型ミオティックフィギュア (AMF) のバイナリ分類に着目したMIDOG 2025 Challenge Track 2の解を提案する。
本手法では,中心収穫前処理と5倍のクロスバリデーションアンサンブル戦略を備えたConvNeXt V2ベースモデルを用いる。
この解は、計算効率を保ちながら、ミオティックフィギュア・サブタイプのための現代の畳み込みアーキテクチャの有効性を示す。
- 参考スコア(独自算出の注目度): 0.026042848991788176
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents our solution for the MIDOG 2025 Challenge Track 2, which focuses on binary classification of normal mitotic figures (NMFs) versus atypical mitotic figures (AMFs) in histopathological images. Our approach leverages a ConvNeXt V2 base model with center cropping preprocessing and 5-fold cross-validation ensemble strategy. The method addresses key challenges including severe class imbalance, high morphological variability, and domain heterogeneity across different tumor types, species, and scanners. Through strategic preprocessing with 60% center cropping and mixed precision training, our model achieved robust performance on the diverse MIDOG 2025 dataset. The solution demonstrates the effectiveness of modern convolutional architectures for mitotic figure subtyping while maintaining computational efficiency through careful architectural choices and training optimizations.
- Abstract(参考訳): 本報告では,健常有糸分裂図形 (NMF) と非定型有糸分裂図形 (AMF) の2値分類に焦点を当てたMIDOG 2025 Challenge Track 2の問題点について述べる。
本手法では,中心収穫前処理と5倍のクロスバリデーションアンサンブル戦略を備えたConvNeXt V2ベースモデルを用いる。
この方法は、重度のクラス不均衡、高い形態的変動、異なる種類の腫瘍、種、スキャナーにわたるドメインの不均一性を含む重要な課題に対処する。
60%のセンタートリミングと混合精度トレーニングによる戦略的前処理により,MIDOG 2025データセット上でのロバストな性能が得られた。
このソリューションは、注意深いアーキテクチャ選択とトレーニング最適化を通じて計算効率を維持しながら、ミトティックフィギュア・サブタイプのための現代の畳み込みアーキテクチャの有効性を示す。
関連論文リスト
- A Hybrid CNN-VSSM model for Multi-View, Multi-Task Mammography Analysis: Robust Diagnosis with Attention-Based Fusion [5.15423063632115]
乳がんの早期かつ正確な検診は乳がん検出に不可欠である。
既存のAIアプローチは、単一ビューのインプットや単一タスクのアウトプットに注目して、不足している。
本研究では,4つの標準マンモグラフィビュー全てを処理する,新しいマルチビュー・マルチタスクハイブリッドディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2025-07-22T18:52:18Z) - Enhanced Semantic Extraction and Guidance for UGC Image Super Resolution [18.058473238611725]
本稿では,拡散フレームワークにセマンティックガイダンスを組み込むことにより,画像超解像に対する新しいアプローチを提案する。
本手法は,野生データセットと合成データセットの劣化の矛盾に対処する。
我々のモデルは、CVIRE 2025Short-form Image Super-Resolution Challengeで2位を獲得した。
論文 参考訳(メタデータ) (2025-04-14T05:26:24Z) - BHViT: Binarized Hybrid Vision Transformer [53.38894971164072]
モデルバイナライゼーションは畳み込みニューラルネットワーク(CNN)のリアルタイムおよびエネルギー効率の計算を可能にした。
本稿では,バイナライズフレンドリーなハイブリッドViTアーキテクチャであるBHViTとそのバイナライズモデルを提案する。
提案アルゴリズムは,バイナリ ViT 手法間でSOTA 性能を実現する。
論文 参考訳(メタデータ) (2025-03-04T08:35:01Z) - Dual-Domain CLIP-Assisted Residual Optimization Perception Model for Metal Artifact Reduction [9.028901322902913]
CT(Computed tomography)画像における金属遺物は,正確な臨床診断に重要な課題である。
深層学習に基づくアプローチ、特に生成モデルは、金属人工物還元(MAR)のために提案されている。
論文 参考訳(メタデータ) (2024-08-14T02:37:26Z) - Model Inversion Attacks Through Target-Specific Conditional Diffusion Models [54.69008212790426]
モデル反転攻撃(MIA)は、ターゲット分類器のトレーニングセットからプライベートイメージを再構築することを目的としており、それによってAIアプリケーションにおけるプライバシー上の懸念が高まる。
従来のGANベースのMIAは、GANの固有の欠陥と潜伏空間における最適化の偏りにより、劣った遺伝子的忠実度に悩まされる傾向にある。
これらの問題を緩和するために拡散モデル反転(Diff-MI)攻撃を提案する。
論文 参考訳(メタデータ) (2024-07-16T06:38:49Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
条件付き可逆ニューラルネットワーク(cINN)に基づくドメイン転送手法を提案する。
提案手法は本質的に,その可逆的アーキテクチャによるサイクル一貫性を保証し,ネットワークトレーニングを最大限効率的に行うことができる。
提案手法は,2つの下流分類タスクにおいて,現実的なスペクトルデータの生成を可能にし,その性能を向上する。
論文 参考訳(メタデータ) (2023-03-17T18:00:27Z) - Enhanced Sharp-GAN For Histopathology Image Synthesis [63.845552349914186]
病理組織像合成は、正確ながん検出のためのディープラーニングアプローチの訓練において、データ不足の問題に対処することを目的としている。
核トポロジと輪郭正則化を用いて合成画像の品質を向上させる新しい手法を提案する。
提案手法は、Sharp-GANを2つのデータセット上の4つの画像品質指標すべてで上回る。
論文 参考訳(メタデータ) (2023-01-24T17:54:01Z) - Fine-Grained Hard Negative Mining: Generalizing Mitosis Detection with a
Fifth of the MIDOG 2022 Dataset [1.2183405753834562]
ミトーシス領域一般化チャレンジ2022(MIDOG)の深層学習ソリューションについて述べる。
我々のアプローチは、アグレッシブデータ拡張を用いた回転不変深層学習モデルの訓練である。
我々のモデルアンサンブルは、自動評価後の最終テストセットで.697のF1スコアを達成した。
論文 参考訳(メタデータ) (2023-01-03T13:06:44Z) - Learning Two-Stream CNN for Multi-Modal Age-related Macular Degeneration
Categorization [6.023239837661721]
加齢関連黄斑変性症(AMD)は50歳以上では一般的な黄斑疾患である。
これまでの研究は、主にシングルモーダル入力によるAMD分類に焦点を当てていた。
対照的に,多モード入力によるAMD分類は臨床的に有意だがほとんど探索されていない方向である。
論文 参考訳(メタデータ) (2020-12-03T12:50:36Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
マルチスケールの伝搬により微分同相モデルを最適化する,新しいディープラーニングベースのフレームワークを開発した。
我々は,脳MRIデータにおける画像-アトラス登録,肝CTデータにおける画像-画像登録を含む,3次元ボリュームデータセットにおける画像登録実験の2つのグループを実行する。
論文 参考訳(メタデータ) (2020-04-30T03:23:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。