論文の概要: STDiff: A State Transition Diffusion Framework for Time Series Imputation in Industrial Systems
- arxiv url: http://arxiv.org/abs/2508.19011v1
- Date: Tue, 26 Aug 2025 13:14:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-27 17:42:38.854208
- Title: STDiff: A State Transition Diffusion Framework for Time Series Imputation in Industrial Systems
- Title(参考訳): STDiff: 産業システムにおける時系列インプットのための状態遷移拡散フレームワーク
- Authors: Gary Simethy, Daniel Ortiz-Arroyo, Petar Durdevic,
- Abstract要約: そこで本研究では,ある状態から次の状態へシステムがどのように進化するかを学ぶために,命令を書き換えるSTDiffを提案する。
STDiffは低いエラーを継続的に達成し、その利点は長いギャップで増大する。
これらの結果は、産業時系列の堅牢なアプローチとして、動的に認識され、明示的な条件付き計算をサポートする。
- 参考スコア(独自算出の注目度): 2.3895981099137535
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most deep learning methods for imputing missing values treat the task as completing patterns within a fixed time window. This assumption often fails in industrial systems, where dynamics are driven by control actions, are highly non-stationary, and can experience long, uninterrupted gaps. We propose STDiff, which reframes imputation as learning how the system evolves from one state to the next. STDiff uses a conditional denoising diffusion model with a causal bias aligned to control theory, generating missing values step-by-step based on the most recent known state and relevant control or environmental inputs. On a public wastewater treatment dataset with simulated missing blocks, STDiff consistently achieves the lowest errors, with its advantage increasing for longer gaps. On a raw industrial dataset with substantial real gaps, it produces trajectories that remain dynamically plausible, in contrast to window-based models that tend to flatten or over-smooth. These results support dynamics-aware, explicitly conditioned imputation as a robust approach for industrial time series, and we discuss computational trade-offs and extensions to broader domains.
- Abstract(参考訳): 欠落した値を計算するための多くのディープラーニング手法は、タスクを固定時間ウィンドウ内の完了パターンとして扱う。
この仮定は、制御アクションによって動的に駆動される産業システムでしばしば失敗し、非常に非定常であり、長く、断続的なギャップを経験することができる。
そこで本研究では,ある状態から次の状態へシステムがどのように進化するかを学ぶために,命令を書き換えるSTDiffを提案する。
STDiffは、制御理論に整合した因果バイアスを持つ条件付き偏差拡散モデルを使用し、最新の状態と関連する制御または環境入力に基づいて、失った値を段階的に生成する。
ブロックを模擬した公共排水処理データセットでは、STDiffは一貫して低いエラーを達成し、その利点は長いギャップで増大する。
実質的なギャップを持つ生の産業データセットでは、平ら化や過度に平らになる傾向にあるウィンドウベースのモデルとは対照的に、動的に安定な軌道を生成する。
これらの結果は、産業時系列の堅牢なアプローチとして、動的に認識され、明示的な条件付き計算をサポートし、より広い領域への計算トレードオフと拡張について議論する。
関連論文リスト
- Elucidated Rolling Diffusion Models for Probabilistic Weather Forecasting [52.6508222408558]
Eucidated Rolling Diffusion Models (ERDM)を紹介する。
ERDMはEucidated Diffusion Models (EDM) の原理的, 性能的設計とローリング予測構造を統一する最初のフレームワークである
2D Navier-StokesシミュレーションとERA5グローバル気象予報の1.5円解像度では、ERDMはキー拡散ベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2025-06-24T21:44:31Z) - Filling the Missings: Spatiotemporal Data Imputation by Conditional Diffusion [7.021277706390712]
環境モニタリングから都市交通管理まで,現代的応用への課題が提示されている。
機械学習とディープラーニングに基づく現在のアプローチは、空間次元と時間次元の依存性を効果的にモデル化するために苦労している。
CoFILLは、拡散品質モデルの本質的な利点に基づいて、高品質な計算結果を生成する。
論文 参考訳(メタデータ) (2025-06-08T11:53:06Z) - Continuous Visual Autoregressive Generation via Score Maximization [69.67438563485887]
本稿では,ベクトル量子化なしで直接視覚的自己回帰生成を可能にする連続VARフレームワークを提案する。
このフレームワークの中で必要なのは、厳密な適切なスコアを選択し、最適化のトレーニング目標として設定することだけです。
論文 参考訳(メタデータ) (2025-05-12T17:58:14Z) - Score as Action: Fine-Tuning Diffusion Generative Models by Continuous-time Reinforcement Learning [15.789898162610529]
人間のフィードバックからの強化学習(RLHF)は、信頼できる生成AIモデルを構築する上で重要なステップとなっている。
本研究は、連続時間RLを用いた微動拡散モデルに対する規律付きアプローチを開発することを目的とする。
論文 参考訳(メタデータ) (2025-02-03T20:50:05Z) - Breaking Determinism: Fuzzy Modeling of Sequential Recommendation Using Discrete State Space Diffusion Model [66.91323540178739]
シークエンシャルレコメンデーション(SR)は、ユーザーが過去の行動に基づいて興味を持つかもしれない項目を予測することを目的としている。
我々はSRを新しい情報理論の観点から再検討し、逐次モデリング手法がユーザの行動のランダム性と予測不可能性を適切に把握できないことを発見した。
ファジィ情報処理理論に触発された本論文では,制限を克服し,ユーザの関心事の進化をよりよく捉えるために,ファジィなインタラクションシーケンスの組を導入する。
論文 参考訳(メタデータ) (2024-10-31T14:52:01Z) - Root Causing Prediction Anomalies Using Explainable AI [3.970146574042422]
本稿では,機械学習モデルにおける根源的性能劣化に対する説明可能なAI(XAI)の新たな応用法を提案する。
単一機能の破損は、カスケード機能、ラベル、コンセプトドリフトを引き起こす可能性がある。
我々は、パーソナライズされた広告に使用されるモデルの信頼性を向上させるために、この手法をうまく応用した。
論文 参考訳(メタデータ) (2024-03-04T19:38:50Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
提案するOpenSTLは,一般的なアプローチを再帰的モデルと再帰的モデルに分類する。
我々は, 合成移動物体軌道, 人間の動き, 運転シーン, 交通流, 天気予報など, さまざまな領域にわたるデータセットの標準評価を行う。
リカレントフリーモデルは、リカレントモデルよりも効率と性能のバランスが良いことがわかった。
論文 参考訳(メタデータ) (2023-06-20T03:02:14Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
拡散値関数(DVF)と呼ばれる単純なアルゴリズムを提案する。
拡散モデルを用いて環境-ロボット相互作用の連成多段階モデルを学ぶ。
本稿では,DVFを用いて複数のコントローラの状態を効率よく把握する方法を示す。
論文 参考訳(メタデータ) (2023-06-09T18:40:55Z) - PriSTI: A Conditional Diffusion Framework for Spatiotemporal Imputation [35.62945607302276]
本稿では,PriSTI という先行モデルを用いた時空間計算のための条件拡散フレームワークを提案する。
PriSTIは、さまざまな現実世界データの欠落パターンにおいて既存の計算方法よりも優れており、高い欠落率やセンサーの故障といったシナリオを効果的に処理する。
論文 参考訳(メタデータ) (2023-02-20T03:52:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。