論文の概要: A Lightweight Crowd Model for Robot Social Navigation
- arxiv url: http://arxiv.org/abs/2508.19595v1
- Date: Wed, 27 Aug 2025 06:13:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-28 19:07:41.512913
- Title: A Lightweight Crowd Model for Robot Social Navigation
- Title(参考訳): ロボット社会ナビゲーションのための軽量群集モデル
- Authors: Maryam Kazemi Eskeri, Thomas Wiedemann, Ville Kyrki, Dominik Baumann, Tomasz Piotr Kucner,
- Abstract要約: 従来の顕微鏡モデルは、計算コストが高いため、密度の高い群衆でスケールするのに苦労する。
本研究では,人間の動作に適した軽量でリアルタイムな群集予測モデルを提案する。
予測精度を3.1 %向上させながら,予測時間の3.6 倍の削減効果を示した。
- 参考スコア(独自算出の注目度): 6.3571026708942036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robots operating in human-populated environments must navigate safely and efficiently while minimizing social disruption. Achieving this requires estimating crowd movement to avoid congested areas in real-time. Traditional microscopic models struggle to scale in dense crowds due to high computational cost, while existing macroscopic crowd prediction models tend to be either overly simplistic or computationally intensive. In this work, we propose a lightweight, real-time macroscopic crowd prediction model tailored for human motion, which balances prediction accuracy and computational efficiency. Our approach simplifies both spatial and temporal processing based on the inherent characteristics of pedestrian flow, enabling robust generalization without the overhead of complex architectures. We demonstrate a 3.6 times reduction in inference time, while improving prediction accuracy by 3.1 %. Integrated into a socially aware planning framework, the model enables efficient and socially compliant robot navigation in dynamic environments. This work highlights that efficient human crowd modeling enables robots to navigate dense environments without costly computations.
- Abstract(参考訳): 人口の多い環境で動くロボットは、社会的破壊を最小限に抑えつつ、安全かつ効率的に移動しなければならない。
この達成には、混雑する地域をリアルタイムで避けるために、群衆の動きを推定する必要がある。
従来の顕微鏡モデルは計算コストが高いため、密度の高い群衆でスケールするのに苦労するが、既存のマクロ的な群衆予測モデルは過度に単純化または計算集約的である傾向にある。
本研究では,人間の動作に適した軽量でリアルタイムなマクロな群集予測モデルを提案し,予測精度と計算効率のバランスをとる。
提案手法は,歩行者の歩行特性に基づく空間的・時間的処理を簡略化し,複雑なアーキテクチャのオーバーヘッドを伴わずにロバストな一般化を可能にする。
予測精度を3.1 %向上させながら,予測時間の3.6 倍の削減効果を示した。
このモデルは、社会的に意識された計画フレームワークに統合され、動的環境における効率的で社会的に適合するロボットナビゲーションを可能にする。
この研究は、効率的な人群モデリングにより、ロボットが高価な計算をすることなく密集した環境をナビゲートできることを強調している。
関連論文リスト
- Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics [50.191655141020505]
この研究は、長期水平予測、エラー蓄積、およびsim-to-real転送の課題に対処することで、モデルに基づく強化学習を前進させる。
スケーラブルでロバストなフレームワークを提供することで、現実のアプリケーションにおいて適応的で効率的なロボットシステムを実現することができる。
論文 参考訳(メタデータ) (2025-01-17T10:39:09Z) - Navigating the Human Maze: Real-Time Robot Pathfinding with Generative Imitation Learning [0.0]
目標条件付き自己回帰モデルを導入し,個人間の複雑な相互作用を捉える。
このモデルは、潜在的なロボット軌道サンプルを処理し、周囲の個人の反応を予測する。
論文 参考訳(メタデータ) (2024-08-07T14:32:41Z) - Hyp2Nav: Hyperbolic Planning and Curiosity for Crowd Navigation [58.574464340559466]
我々は,群集ナビゲーションを実現するための双曲学習を提唱し,Hyp2Navを紹介した。
Hyp2Navは双曲幾何学の本質的な性質を活用し、ナビゲーションタスクにおける意思決定プロセスの階層的性質をよりよく符号化する。
本稿では, 効果的なソーシャルナビゲーション, 最高の成功率, 複数シミュレーション設定におけるリターンをもたらす, 双曲型ポリシーモデルと双曲型好奇性モジュールを提案する。
論文 参考訳(メタデータ) (2024-07-18T14:40:33Z) - Robot Interaction Behavior Generation based on Social Motion Forecasting for Human-Robot Interaction [9.806227900768926]
本稿では,共有ロボット表現空間における社会的動き予測のモデル化を提案する。
ECHOは上記の共有空間で活動し、社会的シナリオで遭遇したエージェントの将来の動きを予測する。
我々は,多対人動作予測タスクにおけるモデルの評価を行い,最先端の性能を大きなマージンで獲得する。
論文 参考訳(メタデータ) (2024-02-07T11:37:14Z) - SPOTR: Spatio-temporal Pose Transformers for Human Motion Prediction [12.248428883804763]
3次元人間の動き予測は、コンピュータビジョンにおける高い重要性と課題を計算した研究領域である。
伝統的に、自己回帰モデルは人間の動きを予測するために用いられてきた。
人間の動作予測のための非自己回帰モデルを提案する。
論文 参考訳(メタデータ) (2023-03-11T01:44:29Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
本研究では,都市環境における歩行者位置予測を目的とした,簡易かつ効果的な歩行者軌道予測モデルを提案する。
我々のモデルは、複数のアテンションブロックとトランスフォーマーを反復的に実行できるニューラルネットワークアーキテクチャである。
ソーシャルマスク, 動的モデル, ソーシャルプーリング層, 複雑なグラフのような構造を明示的に導入することなく, SoTAモデルと同等の結果が得られることを示す。
論文 参考訳(メタデータ) (2022-06-29T07:49:48Z) - Model Predictive Control for Fluid Human-to-Robot Handovers [50.72520769938633]
人間の快適さを考慮に入れた計画運動は、人間ロボットのハンドオーバプロセスの一部ではない。
本稿では,効率的なモデル予測制御フレームワークを用いてスムーズな動きを生成することを提案する。
ユーザ数名の多様なオブジェクトに対して,人間とロボットのハンドオーバ実験を行う。
論文 参考訳(メタデータ) (2022-03-31T23:08:20Z) - Motron: Multimodal Probabilistic Human Motion Forecasting [30.154996245556532]
モトロン(Motron)は、人間のマルチモーダルを捉えるグラフ構造モデルである。
各モードに対して決定論的動きと対応する信頼値を出力する。
実世界の動き予測データセットを用いて,本モデルの性能を実証する。
論文 参考訳(メタデータ) (2022-03-08T14:58:41Z) - Online Body Schema Adaptation through Cost-Sensitive Active Learning [63.84207660737483]
この作業は、icubロボットシミュレータの7dofアームを使用して、シミュレーション環境で実行された。
コストに敏感な能動学習手法は最適な関節構成を選択するために用いられる。
その結果,コスト依存型能動学習は標準的な能動学習手法と同等の精度を示し,実行運動の約半分を減らした。
論文 参考訳(メタデータ) (2021-01-26T16:01:02Z) - Hyperparameters optimization for Deep Learning based emotion prediction
for Human Robot Interaction [0.2549905572365809]
インセプションモジュールをベースとした畳み込みニューラルネットワークアーキテクチャを提案する。
モデルは人型ロボットNAOにリアルタイムに実装され、モデルの堅牢性を評価する。
論文 参考訳(メタデータ) (2020-01-12T05:25:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。