論文の概要: Fractal Flow: Hierarchical and Interpretable Normalizing Flow via Topic Modeling and Recursive Strategy
- arxiv url: http://arxiv.org/abs/2508.19750v1
- Date: Wed, 27 Aug 2025 10:25:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-28 19:07:41.589306
- Title: Fractal Flow: Hierarchical and Interpretable Normalizing Flow via Topic Modeling and Recursive Strategy
- Title(参考訳): フラクタルフロー:トピックモデリングと再帰戦略による階層的かつ解釈可能な正規化フロー
- Authors: Binhui Zhang, Jianwei Ma,
- Abstract要約: 本稿では,表現性と解釈性の両方を高める新しい正規化フローアーキテクチャであるフラクタルフローを提案する。
MNIST, FashionMNIST, CIFAR-10, および物理データを用いた実験により, フラクタルフローが潜在クラスタリング, 制御可能な生成, 推定精度の向上を実証した。
- 参考スコア(独自算出の注目度): 3.648417123399582
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Normalizing Flows provide a principled framework for high-dimensional density estimation and generative modeling by constructing invertible transformations with tractable Jacobian determinants. We propose Fractal Flow, a novel normalizing flow architecture that enhances both expressiveness and interpretability through two key innovations. First, we integrate Kolmogorov-Arnold Networks and incorporate Latent Dirichlet Allocation into normalizing flows to construct a structured, interpretable latent space and model hierarchical semantic clusters. Second, inspired by Fractal Generative Models, we introduce a recursive modular design into normalizing flows to improve transformation interpretability and estimation accuracy. Experiments on MNIST, FashionMNIST, CIFAR-10, and geophysical data demonstrate that the Fractal Flow achieves latent clustering, controllable generation, and superior estimation accuracy.
- Abstract(参考訳): 正規化フローは、トラクタブルヤコビ行列式を用いて可逆変換を構築することにより、高次元密度推定と生成モデリングのための原則化されたフレームワークを提供する。
本稿では2つの重要な革新を通じて表現性と解釈性の両方を高める新しい正規化フローアーキテクチャであるフラクタルフローを提案する。
まず、Kolmogorov-Arnold NetworksとLatent Dirichlet Allocationを正規化フローに統合し、構造化された解釈可能な遅延空間を構築し、階層的セマンティッククラスタをモデル化する。
第2に、フラクタル生成モデルに着想を得て、変換の解釈性と推定精度を向上させるために、フローの正規化に再帰的モジュラー設計を導入する。
MNIST, FashionMNIST, CIFAR-10, および物理データを用いた実験により, フラクタルフローが潜在クラスタリング, 制御可能な生成, 推定精度の向上を実証した。
関連論文リスト
- Kernelised Normalising Flows [10.31916245015817]
正規化フローは、密度推定と生成の二重能力によって特徴づけられる非パラメトリック統計モデルである。
本稿では,カーネルをフレームワークに統合する新しいカーネル正規化フローパラダイムであるFerumal Flowを紹介する。
論文 参考訳(メタデータ) (2023-07-27T13:18:52Z) - Machine Learning model for gas-liquid interface reconstruction in CFD
numerical simulations [59.84561168501493]
流体の体積(VoF)法は多相流シミュレーションにおいて2つの不混和性流体間の界面を追跡・見つけるために広く用いられている。
VoF法の主なボトルネックは、計算コストが高く、非構造化グリッド上での精度が低いため、インタフェース再構成のステップである。
一般的な非構造化メッシュ上でのインタフェース再構築を高速化するために,グラフニューラルネットワーク(GNN)に基づく機械学習拡張VoF手法を提案する。
論文 参考訳(メタデータ) (2022-07-12T17:07:46Z) - Bayesian Structure Learning with Generative Flow Networks [85.84396514570373]
ベイズ構造学習では、データから有向非巡回グラフ(DAG)上の分布を推定することに興味がある。
近年,ジェネレーティブ・フロー・ネットワーク(GFlowNets)と呼ばれる確率モデルのクラスが,ジェネレーティブ・モデリングの一般的なフレームワークとして紹介されている。
DAG-GFlowNetと呼ばれる本手法は,DAGよりも後方の正確な近似を提供する。
論文 参考訳(メタデータ) (2022-02-28T15:53:10Z) - Moser Flow: Divergence-based Generative Modeling on Manifolds [49.04974733536027]
Moser Flow (MF) は連続正規化フロー(CNF)ファミリーにおける新しい生成モデルのクラスである
MFは、訓練中にODEソルバを介して呼び出しやバックプロパゲートを必要としない。
一般曲面からのサンプリングにおけるフローモデルの利用を初めて実演する。
論文 参考訳(メタデータ) (2021-08-18T09:00:24Z) - Generative Flows with Invertible Attentions [135.23766216657745]
生成フローモデルに対する2種類の非可逆的注意機構を導入する。
フロー特徴写像の2分割毎に注意重みと入力表現を学習するために,分割に基づく注意機構を利用する。
提案手法は, トラクタブルジャコビアン行列を用いた非可逆アテンションモジュールをフローベースモデルの任意の位置にシームレスに統合する。
論文 参考訳(メタデータ) (2021-06-07T20:43:04Z) - SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows [78.77808270452974]
SurVAE Flowsは、VAEと正規化フローを含む構成可能な変換のためのモジュラーフレームワークである。
提案手法は,SurVAE フローとして表現できることが示唆された。
論文 参考訳(メタデータ) (2020-07-06T13:13:22Z) - Graphical Normalizing Flows [11.23030807455021]
正規化フローは、ベース分布と一連のニューラルネットワークを組み合わせることで複雑な確率分布をモデル化する。
最先端アーキテクチャは、スカラーからベクトルへの可逆関数を持ち上げるために結合と自己回帰変換に依存している。
本稿では,所定あるいは学習可能なグラフィカル構造を持つ新しい非可逆変換であるグラフィカル正規化フローを提案する。
論文 参考訳(メタデータ) (2020-06-03T21:50:29Z) - Semi-Supervised Learning with Normalizing Flows [54.376602201489995]
FlowGMMは、フローの正規化を伴う生成半教師付き学習におけるエンドツーエンドのアプローチである。
我々は AG-News や Yahoo Answers のテキストデータなど,幅広いアプリケーションに対して有望な結果を示す。
論文 参考訳(メタデータ) (2019-12-30T17:36:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。