論文の概要: Graphical Normalizing Flows
- arxiv url: http://arxiv.org/abs/2006.02548v3
- Date: Fri, 12 Feb 2021 16:47:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-25 17:26:37.216491
- Title: Graphical Normalizing Flows
- Title(参考訳): グラフィカル正規化フロー
- Authors: Antoine Wehenkel and Gilles Louppe
- Abstract要約: 正規化フローは、ベース分布と一連のニューラルネットワークを組み合わせることで複雑な確率分布をモデル化する。
最先端アーキテクチャは、スカラーからベクトルへの可逆関数を持ち上げるために結合と自己回帰変換に依存している。
本稿では,所定あるいは学習可能なグラフィカル構造を持つ新しい非可逆変換であるグラフィカル正規化フローを提案する。
- 参考スコア(独自算出の注目度): 11.23030807455021
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Normalizing flows model complex probability distributions by combining a base
distribution with a series of bijective neural networks. State-of-the-art
architectures rely on coupling and autoregressive transformations to lift up
invertible functions from scalars to vectors. In this work, we revisit these
transformations as probabilistic graphical models, showing they reduce to
Bayesian networks with a pre-defined topology and a learnable density at each
node. From this new perspective, we propose the graphical normalizing flow, a
new invertible transformation with either a prescribed or a learnable graphical
structure. This model provides a promising way to inject domain knowledge into
normalizing flows while preserving both the interpretability of Bayesian
networks and the representation capacity of normalizing flows. We show that
graphical conditioners discover relevant graph structure when we cannot
hypothesize it. In addition, we analyze the effect of $\ell_1$-penalization on
the recovered structure and on the quality of the resulting density estimation.
Finally, we show that graphical conditioners lead to competitive white box
density estimators. Our implementation is available at
https://github.com/AWehenkel/DAG-NF.
- Abstract(参考訳): ベース分布と一連の単射ニューラルネットワークを組み合わせることで、流れモデル複素確率分布を正規化する。
最先端アーキテクチャは、スカラーからベクトルへの可逆関数を持ち上げるために結合と自己回帰変換に依存している。
この研究では、これらの変換を確率的グラフィカルモデルとして再検討し、事前定義されたトポロジーと各ノードの学習可能な密度を持つベイズネットワークに還元することを示す。
この新たな視点から,所定あるいは学習可能なグラフィカル構造を持つ新しい非可逆変換であるグラフィカル正規化フローを提案する。
このモデルは、ベイジアンネットワークの解釈可能性と正規化フローの表現能力の両方を保ちながら、正規化フローにドメイン知識を注入する有望な方法を提供する。
グラフィカルコンディショナーが関連するグラフ構造を仮説化できない場合に発見することを示す。
さらに,$\ell_1$-penalizationが回収した構造および得られた密度推定の質に及ぼす影響を解析した。
最後に, グラフィカルコンディショナーは, 競合するホワイトボックス密度推定器につながることを示す。
私たちの実装はhttps://github.com/awehenkel/dag-nfで利用可能です。
関連論文リスト
- Interpretable A-posteriori Error Indication for Graph Neural Network Surrogate Models [0.0]
本稿では,グラフニューラルネットワーク(GNN)の解釈可能性向上手法を提案する。
最終結果は、予測タスクに本質的に関連付けられたサブグラフに対応する物理空間内の領域を分離する解釈可能なGNNモデルである。
解釈可能なGNNは、推論中に予測される予測エラーの大部分に対応するグラフノードを特定するためにも使用できる。
論文 参考訳(メタデータ) (2023-11-13T18:37:07Z) - Advective Diffusion Transformers for Topological Generalization in Graph
Learning [69.2894350228753]
グラフ拡散方程式は、様々なグラフトポロジーの存在下で、どのように外挿して一般化するかを示す。
本稿では,新たなグラフエンコーダのバックボーンであるAdvective Diffusion Transformer (ADiT)を提案する。
論文 参考訳(メタデータ) (2023-10-10T08:40:47Z) - Geometric Graph Filters and Neural Networks: Limit Properties and
Discriminability Trade-offs [122.06927400759021]
本稿では,グラフニューラルネットワーク (GNN) と多様体ニューラルネットワーク (MNN) の関係について検討する。
これらのグラフ上の畳み込みフィルタとニューラルネットワークが連続多様体上の畳み込みフィルタとニューラルネットワークに収束することを示す。
論文 参考訳(メタデータ) (2023-05-29T08:27:17Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
本稿では,高次元分布をモデル化し,グラフスケルトンと整合した複雑な関係特徴構造を持つデータの新しい例を生成することの問題点を考察する。
提案するモデルは,タスクを2つのフェーズに分割することで,各データポイントのグラフ構造に制約されたデータ特徴を生成する問題に対処する。
第一に、与えられたグラフのノードに関連する機能の分布をモデル化し、第二に、ノードのフィーチャに条件付きでエッジ機能を補完する。
論文 参考訳(メタデータ) (2022-12-01T11:49:07Z) - Capturing Graphs with Hypo-Elliptic Diffusions [7.704064306361941]
ランダムウォークの分布はグラフラプラシアンを用いて定義された拡散方程式に従って進化することを示す。
この結果、テンソル値のグラフ作用素が新しくなり、これは下楕円グラフラプラシアン (Laplacian) と呼ばれる。
本手法は,長距離推論を必要とするデータセット上のグラフ変換器と競合するが,エッジ数では線形にしかスケールしないことを示す。
論文 参考訳(メタデータ) (2022-05-27T16:47:34Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
我々は、ラベルが$r$のニューロンを持つターゲットネットワークの符号によって決定されるとき、勾配流が方向収束することを示す。
我々の結果は、標本サイズによらず、幅が$tildemathcalO(r)$である、緩やかなオーバーパラメータ化をすでに維持しているかもしれない。
論文 参考訳(メタデータ) (2022-05-18T16:57:10Z) - You say Normalizing Flows I see Bayesian Networks [11.23030807455021]
正規化フローは、予め定義された位相と各ノードでの学習可能な密度を持つベイズネットワークに還元されることを示す。
正規化フローにおける多重変換の積み重ねは独立性の仮定を緩和し、モデル分布を絡ませることを示す。
我々は,その深さに関わらず,アフィン正規化流れの不均一性を証明した。
論文 参考訳(メタデータ) (2020-06-01T11:54:50Z) - Residual Correlation in Graph Neural Network Regression [39.54530450932135]
我々は条件付き独立仮定が予測力を著しく制限していることを示します。
この問題を解釈可能かつ効率的なフレームワークで解決する。
我々のフレームワークは、競合するベースラインよりもかなり高い精度を実現している。
論文 参考訳(メタデータ) (2020-02-19T16:32:54Z) - Semi-Supervised Learning with Normalizing Flows [54.376602201489995]
FlowGMMは、フローの正規化を伴う生成半教師付き学習におけるエンドツーエンドのアプローチである。
我々は AG-News や Yahoo Answers のテキストデータなど,幅広いアプリケーションに対して有望な結果を示す。
論文 参考訳(メタデータ) (2019-12-30T17:36:33Z) - Understanding Graph Neural Networks with Generalized Geometric
Scattering Transforms [67.88675386638043]
散乱変換は、畳み込みニューラルネットワークのモデルとして機能する多層ウェーブレットベースのディープラーニングアーキテクチャである。
非対称ウェーブレットの非常に一般的なクラスに基づくグラフに対して、窓付きおよび非窓付き幾何散乱変換を導入する。
これらの非対称グラフ散乱変換は、対称グラフ散乱変換と多くの理論的保証を持つことを示す。
論文 参考訳(メタデータ) (2019-11-14T17:23:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。