論文の概要: AI Agentic Vulnerability Injection And Transformation with Optimized Reasoning
- arxiv url: http://arxiv.org/abs/2508.20866v3
- Date: Thu, 06 Nov 2025 21:24:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-10 18:58:55.545446
- Title: AI Agentic Vulnerability Injection And Transformation with Optimized Reasoning
- Title(参考訳): 最適推論によるAIエージェント脆弱性注入と変換
- Authors: Amine Lbath, Massih-Reza Amini, Aurelien Delaitre, Vadim Okun,
- Abstract要約: AVIATORはAIによる最初の脆弱性注入ワークフローである。
高忠実で多様な大規模な脆弱性データセット生成のために、現実的でカテゴリ固有の脆弱性を自動的に注入する。
セマンティック分析、LoRAベースのファインチューニングとRetrieval-Augmented Generationで強化されたインジェクション合成、静的解析とLLMベースの識別器によるインジェクション後の検証を組み合わせる。
- 参考スコア(独自算出の注目度): 2.918225266151982
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing complexity of software systems and the sophistication of cyber-attacks have underscored the critical need for effective automated vulnerability detection and repair systems. Data-driven approaches using deep learning models show promise but critically depend on the availability of large, accurately labeled datasets. Yet existing datasets either suffer from noisy labels, limited range of vulnerabilities, or fail to reflect vulnerabilities as they occur in real-world software. This also limits large-scale benchmarking of such solutions. Automated vulnerability injection provides a way to directly address these dataset limitations, but existing techniques remain limited in coverage, contextual fidelity, or injection success rates. In this paper, we present AVIATOR, the first AI-agentic vulnerability injection workflow. It automatically injects realistic, category-specific vulnerabilities for high-fidelity, diverse, large-scale vulnerability dataset generation. Unlike prior monolithic approaches, AVIATOR orchestrates specialized AI agents, function agents and traditional code analysis tools that replicate expert reasoning. It combines semantic analysis, injection synthesis enhanced with LoRA-based fine-tuning and Retrieval-Augmented Generation, as well as post-injection validation via static analysis and LLM-based discriminators. This modular decomposition allows specialized agents to focus on distinct tasks, improving robustness of injection and reducing error propagation across the workflow. Evaluations across three distinct benchmarks demonstrate that AVIATOR achieves 91%-95% injection success rates, significantly surpassing existing automated dataset generation techniques in both accuracy and scope of software vulnerabilities.
- Abstract(参考訳): ソフトウェアシステムの複雑さの増大とサイバー攻撃の高度化は、効果的な自動脆弱性検出と修復システムにとって重要な必要性を浮き彫りにした。
ディープラーニングモデルを使用したデータ駆動アプローチは、将来性を示すが、重要なことは、大規模で正確なラベル付きデータセットの可用性に依存する。
しかし、既存のデータセットはノイズの多いラベルや限られた脆弱性に悩まされるか、実際のソフトウェアで発生する脆弱性を反映できないかのいずれかだ。
これはまた、そのようなソリューションの大規模なベンチマークも制限する。
自動脆弱性注入は、これらのデータセット制限に対処する手段を提供するが、既存のテクニックは、カバレッジ、コンテキストの忠実性、インジェクション成功率に制限されている。
本稿では,AI-エージェント型脆弱性注入ワークフローであるAVIATORを紹介する。
高忠実で多様な大規模な脆弱性データセット生成のために、現実的でカテゴリ固有の脆弱性を自動的に注入する。
従来のモノリシックなアプローチとは異なり、AVIATORは専門家の推論を再現する専門のAIエージェント、関数エージェント、従来のコード解析ツールを編成する。
セマンティック分析、LoRAベースのファインチューニングとRetrieval-Augmented Generationで強化されたインジェクション合成、静的解析とLLMベースの識別器によるインジェクション後の検証を組み合わせる。
このモジュール化された分解により、特殊エージェントは異なるタスクに集中でき、インジェクションの堅牢性を改善し、ワークフロー全体のエラーの伝播を減らすことができる。
3つの異なるベンチマークで評価したところ、AVIATORは91%-95%のインジェクション成功率を獲得し、ソフトウェア脆弱性の正確さとスコープの両方で既存の自動データセット生成技術を大幅に上回っている。
関連論文リスト
- RoHOI: Robustness Benchmark for Human-Object Interaction Detection [78.18946529195254]
ヒューマン・オブジェクト・インタラクション(HOI)検出は、コンテキスト認識支援を可能にするロボット・ヒューマン・アシストに不可欠である。
HOI検出のための最初のベンチマークを導入し、様々な課題下でモデルのレジリエンスを評価する。
我々のベンチマークであるRoHOIは、HICO-DETとV-COCOデータセットに基づく20の汚職タイプと、新しいロバストネスにフォーカスしたメトリクスを含んでいる。
論文 参考訳(メタデータ) (2025-07-12T01:58:04Z) - Expert-in-the-Loop Systems with Cross-Domain and In-Domain Few-Shot Learning for Software Vulnerability Detection [38.083049237330826]
本研究では,CWE(Common Weaknessions)を用いたPythonコードの識別をシミュレーションすることにより,ソフトウェア脆弱性評価におけるLLM(Large Language Models)の利用について検討する。
その結果,ゼロショットプロンプトは性能が低いが,少数ショットプロンプトは分類性能を著しく向上させることがわかった。
モデル信頼性、解釈可能性、敵の堅牢性といった課題は、将来の研究にとって重要な領域のままである。
論文 参考訳(メタデータ) (2025-06-11T18:43:51Z) - Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute [61.00662702026523]
より大規模なモデルではなく、推論時間の増加を活用する統合されたテスト時間計算スケーリングフレームワークを提案する。
当社のフレームワークには,内部TTCと外部TTCの2つの補完戦略が組み込まれている。
当社の textbf32B モデルは,DeepSeek R1 671B や OpenAI o1 など,はるかに大きなモデルを上回る 46% の課題解決率を実現している。
論文 参考訳(メタデータ) (2025-03-31T07:31:32Z) - Bringing Order Amidst Chaos: On the Role of Artificial Intelligence in Secure Software Engineering [0.0]
進化を続ける技術的景観は、機会と脅威の両方を提供し、カオスと秩序が競合する動的な空間を作り出す。
セキュアなソフトウェアエンジニアリング(SSE)は、ソフトウェアシステムを危険にさらす脆弱性に継続的に対処しなければならない。
この論文は、AIの精度に影響を与えるドメイン固有の違いに対処することで、SSEのカオスに秩序をもたらすことを目指している。
論文 参考訳(メタデータ) (2025-01-09T11:38:58Z) - DefectHunter: A Novel LLM-Driven Boosted-Conformer-based Code Vulnerability Detection Mechanism [3.9377491512285157]
DefectHunterは、Conformerメカニズムを利用した脆弱性識別のための革新的なモデルである。
このメカニズムは、畳み込みネットワークと自己意識を融合させ、局所的、位置的特徴とグローバル的、コンテンツに基づく相互作用の両方をキャプチャする。
論文 参考訳(メタデータ) (2023-09-27T00:10:29Z) - AttNS: Attention-Inspired Numerical Solving For Limited Data Scenarios [51.94807626839365]
限定データによる微分方程式の解法として,注目型数値解法(AttNS)を提案する。
AttNSは、モデル一般化とロバスト性の向上におけるResidual Neural Networks(ResNet)のアテンションモジュールの効果にインスパイアされている。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z) - Detection of Insider Attacks in Distributed Projected Subgradient
Algorithms [11.096339082411882]
汎用ニューラルネットワークは悪質なエージェントの検出とローカライズに特に適していることを示す。
本稿では,連合学習における最先端のアプローチ,すなわち協調型ピアツーピア機械学習プロトコルを採用することを提案する。
シミュレーションでは,AIに基づく手法の有効性と有効性を検証するために,最小二乗問題を考える。
論文 参考訳(メタデータ) (2021-01-18T08:01:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。