論文の概要: AllSummedUp: un framework open-source pour comparer les metriques d'evaluation de resume
- arxiv url: http://arxiv.org/abs/2508.21389v1
- Date: Fri, 29 Aug 2025 08:05:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-01 19:45:10.95688
- Title: AllSummedUp: un framework open-source pour comparer les metriques d'evaluation de resume
- Title(参考訳): AllSummedUp: un framework open-source pour comparisonr les metriques d'evaluation de resume
- Authors: Tanguy Herserant, Vincent Guigue,
- Abstract要約: 本稿では,自動要約評価における課題について検討する。
6つの代表的な指標で実施した実験に基づいて,文献における報告結果と実験環境における観察結果との間に有意な相違点が認められた。
SummEvalデータセットに適用された統一されたオープンソースフレームワークを導入し、評価指標の公平かつ透明な比較をサポートするように設計されている。
- 参考スコア(独自算出の注目度): 2.2153783542347805
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates reproducibility challenges in automatic text summarization evaluation. Based on experiments conducted across six representative metrics ranging from classical approaches like ROUGE to recent LLM-based methods (G-Eval, SEval-Ex), we highlight significant discrepancies between reported performances in the literature and those observed in our experimental setting. We introduce a unified, open-source framework, applied to the SummEval dataset and designed to support fair and transparent comparison of evaluation metrics. Our results reveal a structural trade-off: metrics with the highest alignment with human judgments tend to be computationally intensive and less stable across runs. Beyond comparative analysis, this study highlights key concerns about relying on LLMs for evaluation, stressing their randomness, technical dependencies, and limited reproducibility. We advocate for more robust evaluation protocols including exhaustive documentation and methodological standardization to ensure greater reliability in automatic summarization assessment.
- Abstract(参考訳): 本稿では,自動要約評価における再現性の課題について検討する。
ROUGEのような古典的手法から最近のLCMに基づく手法(G-Eval, SEval-Ex)まで,6つの代表的な指標を対象に,文献における報告結果と実験環境における観測結果との間に有意な差異が認められた。
SummEvalデータセットに適用された統一されたオープンソースフレームワークを導入し,評価指標の公平かつ透明な比較を支援するように設計された。
人間の判断に最も適した指標は、計算集約的であり、実行中は安定していない傾向にある。
比較分析の他に、本研究では、LCMを評価に頼り、そのランダム性、技術的依存関係、再現性の制限に重点を置いている重要な懸念を強調した。
我々は,自動要約評価における信頼性を高めるため,徹底的な文書化や方法論標準化を含むより堅牢な評価プロトコルを提唱する。
関連論文リスト
- Beyond "Not Novel Enough": Enriching Scholarly Critique with LLM-Assisted Feedback [81.0031690510116]
本稿では,3段階を通して専門家レビューアの動作をモデル化する,自動ノベルティ評価のための構造化アプローチを提案する。
本手法は,人文のノベルティレビューを大規模に分析した結果から得られたものである。
182 ICLR 2025 の提出で評価されたこの手法は、人間の推論と86.5%の一致と、新規性の結論に関する75.3%の合意を達成している。
論文 参考訳(メタデータ) (2025-08-14T16:18:37Z) - Learning to Align Multi-Faceted Evaluation: A Unified and Robust Framework [61.38174427966444]
大規模言語モデル(LLM)は、様々なシナリオにおける自動評価のために、より広く使われている。
従来の研究では、強力なプロプライエタリモデルの評価と判断を再現するために、オープンソースのLLMを微調整しようと試みてきた。
本稿では,評価基準を適応的に定式化し,テキストベースとコード駆動分析の両方を合成する新しい評価フレームワークARJudgeを提案する。
論文 参考訳(メタデータ) (2025-02-26T06:31:45Z) - Exploring Information Retrieval Landscapes: An Investigation of a Novel Evaluation Techniques and Comparative Document Splitting Methods [0.0]
本研究では, 教科書の構造的性質, 記事の簡潔さ, 小説の物語的複雑さについて, 明確な検索戦略が必要であることを示した。
オープンソースのモデルを用いて,質問対と回答対の包括的データセットを生成する新しい評価手法を提案する。
評価には、SequenceMatcher、BLEU、METEOR、BERT Scoreなどの重み付けされたスコアを使用して、システムの正確性と妥当性を評価する。
論文 参考訳(メタデータ) (2024-09-13T02:08:47Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [66.93260816493553]
本稿では,様々なシナリオにまたがってRAGシステムを評価するためのフレームワークであるRAGvalを紹介する。
事実の正確性に焦点をあてて,完全性,幻覚,不適切性の3つの新しい指標を提案する。
実験結果から, RAGEvalは, 生成した試料の明瞭度, 安全性, 適合性, 豊かさにおいて, ゼロショット法とワンショット法より優れていた。
論文 参考訳(メタデータ) (2024-08-02T13:35:11Z) - A Comparative Study of Quality Evaluation Methods for Text Summarization [0.5512295869673147]
本稿では,大規模言語モデル(LLM)に基づくテキスト要約評価手法を提案する。
以上の結果から,LLMの評価は人間の評価と密接に一致しているが,ROUGE-2,BERTScore,SummaCなどの広く使用されている自動測定値には一貫性がない。
論文 参考訳(メタデータ) (2024-06-30T16:12:37Z) - MATEval: A Multi-Agent Discussion Framework for Advancing Open-Ended Text Evaluation [22.19073789961769]
生成型大規模言語モデル(LLM)は注目に値するが、これらのモデルによって生成されたテキストの品質は、しばしば永続的な問題を示す。
MATEval: "Multi-Agent Text Evaluation framework"を提案する。
本フレームワークは,評価プロセスの深度と広さを高めるために,自己回帰と整合性戦略とフィードバック機構を取り入れている。
論文 参考訳(メタデータ) (2024-03-28T10:41:47Z) - DCR-Consistency: Divide-Conquer-Reasoning for Consistency Evaluation and
Improvement of Large Language Models [4.953092503184905]
この研究は、LLM(Large Language Models)生成したテキストの一貫性を評価し改善する自動化フレームワークであるDCRを提案する。
本稿では,DCEからの出力を解釈可能な数値スコアに変換する自動計量変換器(AMC)を提案する。
また,本手法は出力不整合の90%近くを著しく低減し,効果的な幻覚緩和の可能性を示唆している。
論文 参考訳(メタデータ) (2024-01-04T08:34:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。