論文の概要: SIGMUS: Semantic Integration for Knowledge Graphs in Multimodal Urban Spaces
- arxiv url: http://arxiv.org/abs/2509.00287v1
- Date: Sat, 30 Aug 2025 00:35:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 15:17:03.162801
- Title: SIGMUS: Semantic Integration for Knowledge Graphs in Multimodal Urban Spaces
- Title(参考訳): SIGMUS:マルチモーダル都市空間における知識グラフのセマンティック統合
- Authors: Brian Wang, Mani Srivastava,
- Abstract要約: マルチモーダル都市空間における知識グラフのセマンティック統合システムSIGMUSを開発した。
我々は大言語モデル(LLM)を用いて、都市空間で発生した出来事と異なるモダリティのデータの関係を識別するために必要な世界知識を創出する。
我々は,5つの異なるデータソースと,同時に発生する関連するインシデントとの間に合理的な接続を生成できることを発見した。
- 参考スコア(独自算出の注目度): 3.4824497671819152
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern urban spaces are equipped with an increasingly diverse set of sensors, all producing an abundance of multimodal data. Such multimodal data can be used to identify and reason about important incidents occurring in urban landscapes, such as major emergencies, cultural and social events, as well as natural disasters. However, such data may be fragmented over several sources and difficult to integrate due to the reliance on human-driven reasoning for identifying relationships between the multimodal data corresponding to an incident, as well as understanding the different components which define an incident. Such relationships and components are critical to identifying the causes of such incidents, as well as producing forecasting the scale and intensity of future incidents as they begin to develop. In this work, we create SIGMUS, a system for Semantic Integration for Knowledge Graphs in Multimodal Urban Spaces. SIGMUS uses Large Language Models (LLMs) to produce the necessary world knowledge for identifying relationships between incidents occurring in urban spaces and data from different modalities, allowing us to organize evidence and observations relevant to an incident without relying and human-encoded rules for relating multimodal sensory data with incidents. This organized knowledge is represented as a knowledge graph, organizing incidents, observations, and much more. We find that our system is able to produce reasonable connections between 5 different data sources (new article text, CCTV images, air quality, weather, and traffic measurements) and relevant incidents occurring at the same time and location.
- Abstract(参考訳): 現代の都市空間には多様なセンサーが備わっており、すべて多モードデータを生成する。
このようなマルチモーダルデータは、大緊急事態、文化や社会の出来事、自然災害など、都市景観で発生した重要な出来事を識別し、推論するために利用することができる。
しかし、これらのデータは複数のソースで断片化され、インシデントに対応するマルチモーダルデータ間の関係を識別する人間主導の推論に依存しているため、インシデントを定義する異なるコンポーネントを理解するのが困難である。
このような関係や構成要素は、こうした出来事の原因を特定するとともに、それらが発展し始めると、将来の出来事の規模や強度を予測するのに重要である。
本研究では,マルチモーダル都市空間における知識グラフのセマンティック統合システムSIGMUSを提案する。
SIGMUSは大規模言語モデル(LLM)を用いて、都市空間で発生したインシデントと異なるモダリティからのデータとの間の関係を識別するために必要な世界知識を生成する。
この組織化された知識は、インシデントや観察など、知識グラフとして表現されます。
本システムでは, 5つの異なるデータソース(新記事テキスト, CCTV画像, 空気質, 天気, 交通量測定)と, 同時に発生する関連するインシデントとを合理的に関連付けることができる。
関連論文リスト
- Network-Wide Traffic Flow Estimation Across Multiple Cities with Global Open Multi-Source Data: A Large-Scale Case Study in Europe and North America [10.605083464975749]
一般的なネットワークの各リンクの動的トラフィック量をキャプチャするネットワーク全体のトラフィックフローは、スマートモビリティアプリケーションの基本である。
既存の研究では、センサのカバー不足を補うために様々な補足データソースを使用し、未観測のトラフィックフローを見積もっている。
我々は,GOMSマップから情報を効果的に抽出し,合成する,注目に基づくグラフニューラルネットワークを開発した。
論文 参考訳(メタデータ) (2025-02-06T05:59:18Z) - Collaborative Imputation of Urban Time Series through Cross-city Meta-learning [54.438991949772145]
メタ学習型暗黙的ニューラル表現(INR)を利用した新しい協調的計算パラダイムを提案する。
次に,モデルに依存しないメタ学習による都市間協調学習手法を提案する。
20のグローバル都市から得られた多様な都市データセットの実験は、我々のモデルの優れた計算性能と一般化可能性を示している。
論文 参考訳(メタデータ) (2025-01-20T07:12:40Z) - Schema-Guided Culture-Aware Complex Event Simulation with Multi-Agent Role-Play [69.57968387772428]
自然災害や社会と政治の対立といった複雑な出来事は、政府や社会からの迅速な対応を必要とする。
我々は、ドメイン知識を表すイベントスキーマの両方でガイドされる、制御可能な複雑なニュースイベントシミュレータを開発した。
ジオディバース・コモンセンスとカルチャー・ノルム・アウェア・ナレッジ・エンハンスメント・コンポーネントを導入する。
論文 参考訳(メタデータ) (2024-10-24T17:21:43Z) - A Social Context-aware Graph-based Multimodal Attentive Learning Framework for Disaster Content Classification during Emergencies [0.0]
CrisisSpotは、テキストと視覚の複雑な関係をキャプチャする手法である。
IDEAは、データ内の調和とコントラストの両方のパターンをキャプチャして、マルチモーダルインタラクションを強化する。
CrisisSpotは最先端の手法と比較してF1スコアの平均9.45%と5.01%の上昇を達成した。
論文 参考訳(メタデータ) (2024-10-11T13:51:46Z) - Urban Traffic Accident Risk Prediction Revisited: Regionality, Proximity, Similarity and Sparsity [18.566139471849844]
交通事故は人間の健康と財産の安全に重大な危険をもたらす。
交通事故を防ぐために、リスクを予測することで関心が高まっている。
望ましい予測ソリューションは、交通事故の複雑さに対するレジリエンスを示すべきである、と我々は主張する。
論文 参考訳(メタデータ) (2024-07-29T03:10:15Z) - SMA-Hyper: Spatiotemporal Multi-View Fusion Hypergraph Learning for Traffic Accident Prediction [2.807532512532818]
現在のデータ駆動モデルは、しばしばデータ空間と多様な都市データソースの統合に苦しむ。
本稿では,交通事故予測のための動的学習フレームワークを提案する。
これは、高次のクロスリージョン学習を可能にするデュアル適応グラフ学習機構を組み込んでいる。
また、事故データと都市機能の複数のビューを融合させる事前注意機構も採用している。
論文 参考訳(メタデータ) (2024-07-24T21:10:34Z) - Learning Traffic Crashes as Language: Datasets, Benchmarks, and What-if Causal Analyses [76.59021017301127]
我々は,CrashEventという大規模トラフィッククラッシュ言語データセットを提案し,実世界のクラッシュレポート19,340を要約した。
さらに,クラッシュイベントの特徴学習を,新たなテキスト推論問題として定式化し,さらに様々な大規模言語モデル(LLM)を微調整して,詳細な事故結果を予測する。
実験の結果, LLMに基づくアプローチは事故の重大度を予測できるだけでなく, 事故の種類を分類し, 損害を予測できることがわかった。
論文 参考訳(メタデータ) (2024-06-16T03:10:16Z) - A Transformer Framework for Data Fusion and Multi-Task Learning in Smart
Cities [99.56635097352628]
本稿では,新興スマートシティを対象としたトランスフォーマーベースのAIシステムを提案する。
ほぼ全ての入力データと出力タスクタイプをサポートし、現在のS&CCをサポートする。
S&CC環境を代表する多様なタスクセットを学習して実演する。
論文 参考訳(メタデータ) (2022-11-18T20:43:09Z) - GeoAI for Knowledge Graph Construction: Identifying Causality Between
Cascading Events to Support Environmental Resilience Research [3.3072870202596736]
本稿では,災害イベントの因果関係を特定するためのGeoAIソリューションについて紹介する。
我々のソリューションは、イベント知識基盤を強化し、大きな知識グラフでリンクされたカスケードイベントの探索を可能にします。
論文 参考訳(メタデータ) (2022-11-11T05:31:03Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
我々はスイスのチューリッヒの都市ネットワーク内の地域でビデオ計測による実験キャンペーンを組織した。
我々は,既存のサーマルカメラからの測定を確実にすることで,交通の流れや走行時間の観点からの交通状況の把握に注力する。
本稿では,様々なデータソースの融合による移動時間を推定するために,単純かつ効率的な多重線形回帰(MLR)モデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T08:13:57Z) - A German Corpus for Fine-Grained Named Entity Recognition and Relation
Extraction of Traffic and Industry Events [63.08899104652265]
この研究は、微粒な地理的要素で注釈付けされたドイツ語文書のコーパスを記述する。
また、15の交通・産業関連n-aryリレーションシップやイベントもアノテートされている。
コーパスは、ニュースワイヤーのテキスト、Twitterメッセージ、ラジオ局、警察、鉄道会社からの交通報告で構成されている。
論文 参考訳(メタデータ) (2020-04-07T11:39:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。