論文の概要: Forecasting the Ionosphere from Sparse GNSS Data with Temporal-Fusion Transformers
- arxiv url: http://arxiv.org/abs/2509.00631v2
- Date: Thu, 02 Oct 2025 06:16:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 16:59:20.046935
- Title: Forecasting the Ionosphere from Sparse GNSS Data with Temporal-Fusion Transformers
- Title(参考訳): テンポラルフュージョン変換器を用いたスパースGNSSデータからの電離層予測
- Authors: Giacomo Acciarini, Simone Mestici, Halil Kelebek, Linnea Wolniewicz, Michael Vergalla, Madhulika Guhathakurta, Umaa Rebbapragada, Bala Poduval, Atılım Güneş Baydin, Frank Soboczenski,
- Abstract要約: トータル・エレクトロン・コンテント(TEC)は、鍵となる電離層パラメータである。
TECは観測結果から導かれるが、その信頼性は地球規模測定の希少な性質によって制限される。
本稿では,TFT(Temporal Fusion Transformer)を利用した電離層変動予測のための機械学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.28112829609955153
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ionosphere critically influences Global Navigation Satellite Systems (GNSS), satellite communications, and Low Earth Orbit (LEO) operations, yet accurate prediction of its variability remains challenging due to nonlinear couplings between solar, geomagnetic, and thermospheric drivers. Total Electron Content (TEC), a key ionospheric parameter, is derived from GNSS observations, but its reliable forecasting is limited by the sparse nature of global measurements and the limited accuracy of empirical models, especially during strong space weather conditions. In this work, we present a machine learning framework for ionospheric TEC forecasting that leverages Temporal Fusion Transformers (TFT) to predict sparse ionosphere data. Our approach accommodates heterogeneous input sources, including solar irradiance, geomagnetic indices, and GNSS-derived vertical TEC, and applies preprocessing and temporal alignment strategies. Experiments spanning 2010-2025 demonstrate that the model achieves robust predictions up to 24 hours ahead, with root mean square errors as low as 3.33 TECU. Results highlight that solar EUV irradiance provides the strongest predictive signals. Beyond forecasting accuracy, the framework offers interpretability through attention-based analysis, supporting both operational applications and scientific discovery. To encourage reproducibility and community-driven development, we release the full implementation as the open-source toolkit \texttt{ionopy}.
- Abstract(参考訳): 電離層はグローバル・ナビゲーション・サテライト・システム(GNSS)、衛星通信、低地球軌道(LEO)の運用に重大な影響を与えているが、太陽、地磁気、熱圏のドライバ間の非線形結合のため、その変動の正確な予測は難しいままである。
主要な電離圏パラメータであるトータル・エレクトロン・コンテント(TEC)は、GNSS観測から導かれるが、その信頼性は、地球規模の測定のスパースな性質と、特に強い宇宙気象条件下での経験的モデルの限られた精度によって制限される。
本研究では,TFT(Temporal Fusion Transformer)を利用した電離層変動予測のための機械学習フレームワークを提案する。
提案手法は, 太陽放射, 地磁気指標, GNSS由来の垂直TECなどの異種入力源に対応し, 事前処理と時間的アライメント戦略を適用した。
2010年から2025年にかけての実験では、ルート平均二乗誤差が3.33 TECUと低いため、モデルが24時間先まで頑健な予測を達成している。
結果は、太陽のEUV照射が最も強い予測信号を提供することを示している。
予測精度以外にも、このフレームワークは注意に基づく分析を通じて解釈可能性を提供し、運用アプリケーションと科学的発見の両方をサポートする。
再現性とコミュニティ主導の開発を促進するため、オープンソースツールキット \texttt{ionopy} として完全な実装をリリースする。
関連論文リスト
- Advances in Land Surface Model-based Forecasting: A comparative study of LSTM, Gradient Boosting, and Feedforward Neural Network Models as prognostic state emulators [4.852378895360775]
地表面プロセスのシミュレーションによる実験研究の高速化における3つの代理モデルの効率性を評価する。
以上の結果から, LSTMネットワークは, 予測期間を経た平均モデル全体の精度は高いが, 慎重に調整した場合は, 大陸の長距離予測に優れることがわかった。
論文 参考訳(メタデータ) (2024-07-23T13:26:05Z) - TriQXNet: Forecasting Dst Index from Solar Wind Data Using an Interpretable Parallel Classical-Quantum Framework with Uncertainty Quantification [2.1940162009107382]
地磁気嵐はGPS、衛星通信、電力網などの重要なインフラを破壊する可能性がある。
本研究は、Dst予測のためのハイブリッド古典量子ニューラルネットワークであるTriQXNetを紹介する。
我々のモデルは、古典的および量子コンピューティング、共形予測、およびハイブリッドアーキテクチャ内に説明可能なAI(XAI)を統合する。
論文 参考訳(メタデータ) (2024-07-09T08:30:42Z) - Global 4D Ionospheric STEC Prediction based on DeepONet for GNSS Rays [14.934920001287962]
我々は,DeepONet-STECと呼ばれる高精度STECモデルを提案する。これは非線形演算子を学習し,特定地上局 - 衛星線経路の4次元時空間統合パラメータを予測する。
実演として,電離層および嵐条件下でのグローバルおよびUS-CORS体制の観測データに基づくモデルの性能評価を行った。
DeepONet-STECモデルの結果から,時間分解能30sのPPP(Precise Point Positioning)による観測データを用いて,3日間の静かな期間における72時間予測を高精度に行うことができた。
論文 参考訳(メタデータ) (2024-03-12T10:51:38Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
我々は,地球規模の気象変動に対するAIに基づくデータ同化モデル,すなわちAdasを提案する。
我々は,アダスが地球観測を同化して高品質な分析を行い,長期にわたって安定して運用できることを実証した。
この手法を現実のシナリオに適用するのは,私たちが初めてです。
論文 参考訳(メタデータ) (2023-12-18T09:05:28Z) - High-Cadence Thermospheric Density Estimation enabled by Machine
Learning on Solar Imagery [0.14061979259370275]
我々は、NASAのソーラー・ダイナミクス・オブザーバ(SDO)極紫外線(EUV)スペクトル画像をニューラル熱圏密度モデルに組み込む。
我々は、EUV画像により、時間分解能をはるかに高め、地上ベースのプロキシを置き換えることができることを示した。
論文 参考訳(メタデータ) (2023-11-12T23:39:21Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
太陽発電は二酸化炭素の排出量を大幅に削減することで気候変動を緩和する大きな可能性を秘めている。
しかし、太陽光の固有の変動は、電力網に太陽エネルギーをシームレスに統合する上で大きな課題となる。
本稿では,衛星データを用いた時間的文脈の活用を目的としたディープラーニングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-06-01T19:54:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。