論文の概要: On Verifiable Legal Reasoning: A Multi-Agent Framework with Formalized Knowledge Representations
- arxiv url: http://arxiv.org/abs/2509.00710v1
- Date: Sun, 31 Aug 2025 06:03:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 15:17:03.357145
- Title: On Verifiable Legal Reasoning: A Multi-Agent Framework with Formalized Knowledge Representations
- Title(参考訳): 検証可能な法的推論: 形式化された知識表現を持つマルチエージェントフレームワーク
- Authors: Albert Sadowski, Jarosław A. Chudziak,
- Abstract要約: 本稿では,法的な推論を異なる知識獲得と応用段階に分解するモジュール型マルチエージェントフレームワークを提案する。
第一段階では、特殊エージェントは法的概念を抽出し、規則を形式化し、法令の検証可能な中間表現を作成する。
第2段階では、クエリを分析してケース事実をスキーマにマッピングし、論理的に関連する結論を導出するためのシンボリック推論を実行し、最終的な回答を生成するという3つのステップを通じて、この知識を特定のケースに適用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Legal reasoning requires both precise interpretation of statutory language and consistent application of complex rules, presenting significant challenges for AI systems. This paper introduces a modular multi-agent framework that decomposes legal reasoning into distinct knowledge acquisition and application stages. In the first stage, specialized agents extract legal concepts and formalize rules to create verifiable intermediate representations of statutes. The second stage applies this knowledge to specific cases through three steps: analyzing queries to map case facts onto the ontology schema, performing symbolic inference to derive logically entailed conclusions, and generating final answers using a programmatic implementation that operationalizes the ontological knowledge. This bridging of natural language understanding with symbolic reasoning provides explicit and verifiable inspection points, significantly enhancing transparency compared to end-to-end approaches. Evaluation on statutory tax calculation tasks demonstrates substantial improvements, with foundational models achieving 76.4\% accuracy compared to 18.8\% baseline performance, effectively narrowing the performance gap between reasoning and foundational models. These findings suggest that modular architectures with formalized knowledge representations can make sophisticated legal reasoning more accessible through computationally efficient models while enhancing consistency and explainability in AI legal reasoning, establishing a foundation for future research into more transparent, trustworthy, and effective AI systems for legal domain.
- Abstract(参考訳): 法的な推論は、法定言語の正確な解釈と複雑な規則の一貫性のある適用の両方を必要とし、AIシステムにとって重要な課題を提示する。
本稿では,法的な推論を異なる知識獲得と応用段階に分解するモジュール型マルチエージェントフレームワークを提案する。
第一段階では、特殊エージェントは法的概念を抽出し、規則を形式化し、法令の検証可能な中間表現を作成する。
第2段階では、クエリを分析してケース事実をオントロジースキーマにマッピングし、論理的に関連する結論を導出するためのシンボリック推論を実行し、オントロジー知識を運用するプログラム実装を使用して最終回答を生成する。
このシンボリック推論による自然言語理解のブリッジにより、明確で検証可能な検査ポイントが提供され、エンドツーエンドのアプローチに比べて透明性が著しく向上する。
法定税額計算タスクの評価は、基礎モデルが18.8.%のベースライン性能と比較して76.4.%の精度を達成し、推論と基礎モデルのパフォーマンスギャップを効果的に狭めるなど、大幅な改善を示している。
これらの結果は、形式化された知識表現を持つモジュラーアーキテクチャは、計算効率の良いモデルを通じて洗練された法的推論をよりアクセスしやすくすると同時に、AIの法的な推論における一貫性と説明可能性を高め、より透明性があり信頼性が高く効果的な法的なドメインのためのAIシステムに関する将来の研究の基盤を確立することを示唆している。
関連論文リスト
- Judicial Requirements for Generative AI in Legal Reasoning [0.0]
大規模言語モデル(LLM)はプロのドメインに統合されているが、法律のような高度な分野における制限は理解されていない。
本稿では、AIシステムが司法判断における信頼性の高い推論ツールとして機能しなければならない中核機能について述べる。
論文 参考訳(メタデータ) (2025-08-26T09:56:26Z) - GLARE: Agentic Reasoning for Legal Judgment Prediction [60.13483016810707]
法学分野では、法的判断予測(LJP)がますます重要になっている。
既存の大規模言語モデル (LLM) には、法的な知識が不足しているため、推論に不十分な重大な問題がある。
GLAREは,異なるモジュールを呼び出し,重要な法的知識を動的に獲得するエージェント的法的推論フレームワークである。
論文 参考訳(メタデータ) (2025-08-22T13:38:12Z) - An Integrated Framework of Prompt Engineering and Multidimensional Knowledge Graphs for Legal Dispute Analysis [11.298720507764727]
本研究は,多次元知識グラフと即時エンジニアリングを組み合わせることで,法的な紛争分析を改善する枠組みを提案する。
その結果,感度,特異度,引用精度が大きく改善した。
論文 参考訳(メタデータ) (2025-07-10T16:22:41Z) - Explainable Rule Application via Structured Prompting: A Neural-Symbolic Approach [0.0]
大規模言語モデル(LLM)は複雑な推論タスクでは優れているが、一貫性のあるルールアプリケーション、例外処理、説明可能性に苦慮している。
本稿では、推論を3つの検証可能なステップ(エンティティ識別、プロパティ抽出、シンボリックルール適用)に分解する構造化プロンプトフレームワークを提案する。
論文 参考訳(メタデータ) (2025-06-19T14:14:01Z) - CLATTER: Comprehensive Entailment Reasoning for Hallucination Detection [60.98964268961243]
我々は,系統的かつ包括的な推論プロセスを実行するためのモデルを導くことで,モデルがよりきめ細やかで正確な絞り込み決定を実行できることを提案する。
我々は,(i)クレームの分解,(ii)サブクレームの属性と包含分類,および(iii)集約分類から成る3段階の推論プロセスを定義し,そのような導出推論が実際に幻覚検出の改善をもたらすことを示す。
論文 参考訳(メタデータ) (2025-06-05T17:02:52Z) - RLJP: Legal Judgment Prediction via First-Order Logic Rule-enhanced with Large Language Models [58.69183479148083]
法的判断予測(LJP)は、法的AIにおいて重要な課題である。
既存のLJPモデルは、高いパフォーマンスのために司法上の前例と法的な知識を統合している。
しかし彼らは、厳密な論理分析を必要とする法的判断の重要な要素である法的推論論理を無視している。
本稿では、一階述語論理(FOL)形式と比較学習(CL)に基づく規則強化された法的判断予測フレームワークを提案する。
論文 参考訳(メタデータ) (2025-05-27T14:50:21Z) - An Explicit Syllogistic Legal Reasoning Framework for Large Language Models [5.501226256903341]
大規模言語モデル(LLM)は法的問題に答えることができるが、しばしば明示的なシロジック推論に苦慮する。
我々は,LLMが明示的なシロジックな法的推論を行えるように設計された新しいフレームワークであるSyLeRを紹介した。
SyLeRは、関係する法規や前例を合成するために、木構造的階層的検索機構を使用している。
論文 参考訳(メタデータ) (2025-04-05T03:34:51Z) - A Law Reasoning Benchmark for LLM with Tree-Organized Structures including Factum Probandum, Evidence and Experiences [76.73731245899454]
本稿では,階層的なファクトラム,証拠,暗黙的な経験に富む透明な法理推論スキーマを提案する。
このスキーマにインスパイアされた課題は、テキストのケース記述を取り込み、最終決定を正当化する階層構造を出力する。
このベンチマークは、Intelligent Courtにおける透明で説明可能なAI支援法推論の道を開く」。
論文 参考訳(メタデータ) (2025-03-02T10:26:54Z) - Elevating Legal LLM Responses: Harnessing Trainable Logical Structures and Semantic Knowledge with Legal Reasoning [19.477062052536887]
意味と論理的コヒーレンスを橋渡しする教師ありフレームワークである論理・意味統合モデル(LSIM)を提案する。
LSIMは3つの要素から構成される: 強化学習は各質問に対して構造化されたファクトルールチェーンを予測し、訓練可能なDeep Structured Semantic Model(DSSM)は最も関連性の高い質問を検索し、回答内学習は最終回答を生成する。
LSIMが従来の手法に比べて精度と信頼性を著しく向上させるような,自動測定と人的評価デーモンレートによる実世界の法的データセットのQA検証実験を行った。
論文 参考訳(メタデータ) (2025-02-11T19:33:07Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
判例検索のための識別モデルであるDELTAを紹介する。
我々は浅層デコーダを利用して情報ボトルネックを作り、表現能力の向上を目指しています。
本手法は, 判例検索において, 既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2024-03-27T10:40:14Z) - From LSAT: The Progress and Challenges of Complex Reasoning [56.07448735248901]
本稿では,LSAT(Law School Admission Test)の3つの課題について,解析的推論,論理的推論,読解の3つの課題について検討する。
本稿では,これら3つのタスクを統合するハイブリッド推論システムを提案する。
論文 参考訳(メタデータ) (2021-08-02T05:43:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。